
User Manual

Tektronix
/

TekTMS
Instrument Front Panel Developers
S3FTlOO

This document supports software version 2.5.

Please check for change information at the
rear of this manual.

First Printing: October 1992

Tektronix, Inc., PO. Box 500, Beaverton, OR 97077

Printed in U.S.A.

Copyright O Tektronix, Inc., 1992. All rights reserved. Tektronix products are covered by U.S. and foreign
patents, issued and pending. The following are registered trademarks: TEKTRONIX, TEK, TEKPROBE,
TEKTMS, and SCOPE-MOBILE.

Microsoft and MS-DOS are registered trademarks and Windows is a trademark of Microsoft Corporation

IBM and PC AT are registered trademarks of International Business Machines Corporation.

SOFTWARE WARRANTY SUMMARY
Tektronix warrants that its software products will conform to the specifications in the documentation provided with the product,
when used properly in the specified operating environment, for a period of three (3) months. The warranty period begins on
the date of shipment, except that if the program is installed by Tektronix, the warranty period begins on the date of installation
or one month after the date of shipment, whichever is earlier. If the software product does not conform as warranted, Tektronix
will provide the remedial services as described in the documentation provided with the product.

For products offered without documentation, Tektronix warrants that the media on which the software product is furnished and
the encoding of the programs on the media will be free from defects in materials and workmanship for a period of three (3)
months from the date of shipment. If any such medium or encoding proves defective during the warranty period, Tektronix will
provide a replacement in exchange for the defective medium. Except as to the media on which the software product is
furnished, the software product is provided "as is" without warranty of any kind, either express or implied.

Tektronix does not warrant that the functions contained in any software product will meet Customer's requirements or that the
operation of the programs will be uninterrupted or error-free.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty
period and, for warranted products, make suitable arrangements for such service in accordance with the instructions received
from Tektronix. If Tektronix is unable, within a reasonable time after receipt of such notice, to provide remedial service for
warranted products or, for "as is" products, to provide a replacement that is free from defects in materials and workmanship,
Customer may terminate the license for the software product and return the software product and any associated materials for
credit or refund.

The above warranties shall not apply to any software product that has been modified or altered by Customer. Tektronix shall
not be obligated to furnish service under this warranty with respect to any software product a) that is used in an operating
environment other than that specified or in a manner inconsistent with the User Manual and documentation; or b) when the
software product has been integrated with other software if the result of such integration increases the time or difficulty of
analyzing or servicing the software product or the problems ascribed in the software product.

THE ABOVE WARRANTIES ARE GIVEN BY TEKTRONIX WITH RESPECT TO THE LISTED PRODUCTS IN LIEU OF ANY
OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY
TO PROVIDE REMEDIAL SERVICE WHEN SPECIFIED, REPLACE DEFECTIVE MEDIA, OR REFUND CUSTOMER'S
PAYMENT, AS APPLICABLE, IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF
EITHER WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Preface

The objective of this manual is to explain the development of instrument
driver (.ISD files) or scripts, used to define front panel displays for the Inter-
active Procedure Generator (IPG). These front panel displays show the
controls you want to manipulate during the running of an IPG test proce-
dure. This manual also gives instructions for adding help messages, using
the IPG Help Editor, for use with the scripts.

lnstrument Script Language (ISL) is used to develop the scripts. Any word
processing editor that will produce ASCII output can be used to generate
script files containing the script statements.

About this Manual This manual contains the following sections and appendices:

H Section 1, General Information - Contains an overview of the topics
covered in this manual.

Section 2, Instrument Script Language Description - Describes the
different parts of scripts, and what they contain and do.

H Section 3, Writing Scripts - Gives a tutorial on writing scripts.

Section 4, Using the Help Editor - Gives tutorials on using the Help
Editor.

H Appendix A, TDM5120.ISD Script Printout - Gives a printout of the
TDM5120.ISD script file used in the tutorials.

Related IPG
Documentation

The Interactive Procedure Generator Users Manual, provided with the IPG
package, provides information about developing procedures using scripts.

TekTMS Instrument Front Panel Developer User Manual i

ii Preface

Contents

... Preface

....................................... About this Manual
.............................. Related IPG Documentation

.. Contents

Section 1
General lnformation

General Information ... 1-1

User Requirements 1-1

Overview .. 1-1
Interactive Views 1-2 .
Program Generation Views . 1-2
Front Panel View Optimization . 1-3
Setting. Learn. and Measurement Control Functions 1-3
Actual vs Composite Controls . 1-4
Updating Features . 1-5
Front Panel Appearance . 1-5
Front Panel Helps . 1-5

Section 2
lnstrument Script Language Descriptions

Instrument Script Language Descriptions 2-1

Script Basics .. 2-1
The Framework . 2-2
General . 2-2
Script Block . 2-4

BUSNOTE Block ... 2-4
GPlB Parameters . 2-5
RS232 Parameters . 2-6
VX5520 Bus Parameters . 2-6
VXI Internal Bus Parameters . 2-7
MXI Bus Parameters . 2-7
CDS 53 Series Parameters . 2-7

LEARN Block .. 2-8
VIEW Block 2-9 ..

. Multiple Views 2-10
. Display Types 2-10

TekTMS Instrument Front Panel Developer User Manual iii

ViewLayout .
. Coordinate System

Text or Connect Statement .
CONTROLGROUP Block

. Control Block
. Control ID

. CONTROLGROUP Types
Text box .
Editbox .
Listbox .

. Pushbutton
. Checkbox

. Radiobutton
WaveformDisplay .

. Control Type Summary
SETTING and MEASUREMENT Blocks

Dialogs .
. Statements

IF Conditional Structure
. Condition

. Dialogs
Statements .

Functions ...
Chr .
TimeDelay .

. Display
. FastDCWrite
. FastDCRead

. Readlength

... Variable Types
Integers .
Floats .
Strings .

. Waveforms

... Variable Formats
Controller Dialog Formats .

. lnstrument Dialog Formats
Common Problems when Using lnstrument Dialog

. Formatting

ISLKeywords ..

iv Contents

Section 3
Writing Scripts

Writing Scripts ..
Introduction ...

The Editor .
References .
The Script Model .

.. Script Planning
. Charting A Front Panel

Determining Control Types .
Interchangeability .

.......................... Script Development Procedures
. Script and Description Presentation

Many-To-One Control Groups .
Testing Scripts ...

. Initializing the Script
Activating Controls .

. A Rejected Script
.............................. Generating Test Procedures

Modifying Scripts ..
Binary ISDFiles ...

.. Using Binary
Using Binary ISD Files

Section 4
Help Editor

Help Editor .. 4-1

Learning to Use the Help Editor 4-1
Starting the Help Editor Program . 4-2
Adding and Linking a Message . 4-9

. Linking 4-10
. Creating a New Message 4-12

. Deleting a Message 4-14
. Ending an Edit Session 4-15

. Making a New ISD Help Message File 4-15
....................................... Message Link Map 4-17

... MessageForm 4-19
..................................... Printing a *.HLP File 4-20

TekTMS Instrument Front Panel Developer User Manual v

Appendices
Appendix A: TDM5120.ISD Script Listing A- 1

Appendix B: Software Performance Report A-9

Index

Change Information

vi Contents

Section 1
General Information

General Information

This manual describes and explains the Instrument Script Language, its
structure, syntax, contents and use for developing scripts. A script performs
two basic functions:

w Defines the graphical appearance of a logical instrument window for an
instrument. This capability enables user interaction.

w Defines how each control in the logical instrument view interacts with the
hardware (i.e., instruments on the bus, and the bus itself).

Also included in this manual are instructions for using the Help Editor (an
IPG utility program). The Help Editor allows the user to incorporate help
messages within the script.

User Requirements Developing scripts does not require considerable programming skills, but
some knowledge of programming is desirable. You should also have knowl-
edge of PC DOS and a text editor or word processing program that exports
ASCII text.

It will be helpful to refer to the lnteractive Procedure Generator Users Manual
for instructions on how the scripts you write will be used to develop test
procedures.

Overview Scripts serves two purposes: First, they provide an interactive, graphical,
instrument front panel view for user interaction with the instrument while
using the lnteractive Procedure Generator (IPG); second, scripts control the
flow of information between a test program and the instrument when run-
ning an IPG test procedure.

A script may contain only a subset of the instrument functionality. This
approach is useful if you are using only some of the instrument functions, or
if you desire a simplified approach. Also, any number of identical instru-
ments can use (copies of) the same script. With IPG you can call scripts for
use as you generate test procedures.

Front panel views provided by scripts have two general uses: lnteractive and
Program Generation (see Figure 1-1). We can further classify front panel
views into two general implementations: Fully Functional and Application
Oriented.

-- -- -

TekTMS Instrument Front Panel Developer User Manual

Front Panel Program lnteractive
View Uses Generation

------ - - -

Front Panel
View Implementations Fully Application

Functional Oriented

Figure 1-1 : Categorization of Front Panel Views

lnteractive Views

lnteractive front panel views are generally intended to be used for real-time
testing under full-time operator control, using fully interfaced, on-line instru-
ments. These front panel views normally would be fully functional imple-
mentations, and contain a complete, or nearly complete, set of instrument
controls and/or functions.

Program Generation Views

Program Generation front panel views are generally intended to be used to
create automated test procedures that may be run unattended in real-time
applications when started by an operator, or automatically at a time speci-
fied by program control. These front panel views may be fully functional or
application oriented implementations depending upon the specific require-
ments of the test.

Fully functional view implementations, as previously indicated, support the
full range of an instrument's control functions.

Application oriented implementations can be simply defined as tailored,
customized, or optimized scripts, which would contain only those controls
needed for a particular test situation. These scripts also may contain com-
posite controls that combine several instrument functions into one applica-
tion-oriented, high-level control function that does not correspond to a single
instrument control.

1-2 General Information

There are several advantages to using an application oriented front panel:

m With fewer controls, it is easier for the program developer or test opera-
tor to find and select a control for a particular application.

With only relevant controls would reduce the overall size of the view.
(using less memory space allows more drivers to be stored on the
system).

With only a subset of controls, it may be easier to make instrument
substitutions. Instruments would be more likely to share a common
subset of controls than they would total functionality.

Front Panel View Optimization

Instrument front panel drivers should be optimized whether they are used
interactively or for program generation.

As indicated earlier, interactive front panels should contain controls that
correspond to actual instrument front panel controls, or in the case of VXI
instruments, to specific instrument functions. This criteria closely fits the
definition of a fully-functional front panel, which is most likely to contain a
complete set of the instrument's most commonly used controls.

In other cases, controls that are implemented on an interactive front panel
may not be needed on a front panel optimized for program generation use.
For example, it may be possible to adjust a signal generator frequency by
pressing an INCrement or DECrement pushbutton on the instrument's front
panel. While this function might be useful on an interactive front panel, it is
not likely to be used in program generation, thus it probably should not be
implemented on a program generation front panel.

If both extensive interactive control and program generation are required,
two instrument front panel views should be created, with each optimized for
its primary use. For instruments with hardware front panels, a program
generation front panel view or set of program generation front panel views
may be sufficient. For instruments, such as VXI instruments that do not have
hardware front panels, it may be desirable to have both program generation
and interactive front panels. It also may be desirable to have an interactive
front panel available whenever a test operator is expected to use an instru-
ment to troubleshoot a failed unit-under-test (UUT).

Setting, Learn, and Measurement Control Functions

NOTE

In IPG, the keywords QUERY, MEASURE, and MEASUREMENT are
synonymous and fully interchangeable. Any one of them can be
used in a Learn or Measurement block to query an instrument
control for its current setting or measured value.

TekTMS Instrument Front Panel Developer User Manual 1-3

An interactive front panel driver should implement the LEARN block for each
instrument, and the SETTING and MEASUREMENT blocks for every control.
The LEARN block allows the user to query the instrument for its current
settings, store them in a procedure step, then recall them on demand to
restore the instrument to those settings. The inclusion of the MEASURE-
MENT block provides a means for querying the instrument for a control's
current setting or measured value, which can be used to update the interac-
tive front panel display (Also see Updating Features, following). On instru-
ments that do not support a QUERY function (LEARN or MEASUREMENT
block) for their controls, a current status query cannot be implemented for
updating the front panel display.

NOTE

The instrument help message should tell the user whether or not
the instrument has a Learn block.

In a program generation front panel view, query functions should be imple-
mented only to acquire a measured value. By eliminating all other QUERY
(or MEASURE/MEASUREMENT) blocks, the driver can be smaller in size,
thus minimizing overhead at execution time and allowing more drivers to be
stored in memory.

Actual vs Composite Controls

On an interactive front panel view, a control is more likely to correspond
directly to an instrument control or command than it is on a program gen-
eration front panel. For example, a digital multimeter will typically have
controls for measuring voltage and current. On an interactive front panel,
these controls would be implemented as two separate displays, one for
voltage and one for current. Each display would correspond to an actual
instrument function.

However, if test procedures are to be developed for an application-oriented
program generation front panel where a power measurement is required,
the view should contain a control for displaying power rather than two
displays for current and voltage. The script for this control would query the
instrument for its current and voltage readings, calculate the power, and
display it on a one front panel power control. In this case, there would be
only one control for displaying power, which would not correspond to an
actual instrument control or function.

A program generation front panel will often contain controls that do not
correspond to controls on the actual instrument front panel. If a function that
involves several instrument controls is used frequently in a test situation, this
function could be created as a single multifunction control on the front
panel. As stated earlier, calculations could be incorporated into the control
functions. For example, several readings might be taken and averaged with
only the averaged result displayed in a control on the front panel. In this
case, only one control needs to be selected by the test procedure step to
obtain the averaged result.

1-4 General Information

Updating Features

An interactive front panel may be optimized to make use of the front panel
display updating features such as automatic refresh, driver control update
lists, and the front panel menu Update! command.

Front Panel Appearance

The appearance of front panel displays may be enhanced by using various
optimizing techniques. For example, a data display might be enhanced by
converting its reading from engineering notation (5E-3) to standard suffix
units notation (5 mV). This technique should be use only on interactive front
panel views.

On a program generation front panel, interactive features, display enhance-
ments, and the total number of controls may be minimized to make the
panel smaller and easier to use, and to provide the minimum overhead at
execution time.

Front Panel Helps

Each front panel should have a help file. This file will contain useful hints
about the instrument front panel and about each control. See Section 4,
Learning To Use the Help Editor for more information.

-

TekTMS Instrument Front Panel Developer User Manual

1-6 General Information

Section 2
Instrument Script

Language Descriptions

lnstrument Script Language Descriptions

Script Basics This section provides a detailed description of the block structure of the
lnstrument Script Language (ISL) shown in Figure 2-1. ISL is used in devel-
oping scripts. This section explains the interaction between blocks, the
constructs used in blocks, construct syntax, and the ISL special functions.

Script block (one per file) - Required

BUSNOTE block (one only) - Required

Sets bus parameters

LEARN block - Optional

Learns settings of a given instrument

VIEW block (one or more) - Optional

Creates one view of instrument controls

TextlConnect Statement - Optional

Displays text,
Draws lines

CONTROLGROUP block (one or more)

Defines CONTROL function

CONTROL block (one or more)

Defines CONTROL type, function ...

SETTING block - Optional

lnterface to send setting data

MEASUREMENT block - Optional

Interface to receive QUERY data

Figure 2-1 : ISL Block Structure

TekTMS Instrument Front Panel Developer User Manual 2- 1

The Framework

A script is a text file that can be created using a text editor or the front panel
editor. The syntax is block structured: all blocks are identified by keywords.
The termination of every block is marked with the keyword END. Related
information is encapsulated in blocks, as shown in Figure 2-1 on the pre-
vious page. All items in a script, (e.g., keywords, variable names, etc.) are
case insensitive; therefore, uppercase and lowercase may be mixed within
an entry as desired (e.g., script is the same as SCRIPT).

General

A line beginning with the keyword REM or REMARK is treated as a com-
ment. Each remark line must have REM or REMARK at its beginning.

A section may be indented and spaced in any style you want to improve
readability. The syntax of the script is free format; i.e., any number of contig-
uous spaces, tabs, or new-lines are equivalent to a single space.

The following is a simple example of a script: it defines only one CONTROL
in one view. A script can have many controls and many views, but, for
introducing a complete script, this example is sufficient.

REM THE FOLLOWING IS AN EXAMPLE OF A SIMPLE SCRIPT TO
REM ILLUSTRATE THE VARIOUS BLOCKS USED IN A SCRIPT.
REM NOT ALL BLOCKS ARE SHOWN IN THIS EXAMPLE.
REM THE TEXT, CONNECT, AND LEARN BLOCKS ARE NOT USED IN
REM THIS EXAMPLE. THEY WILL BE EXPLAINED IN OTHER
REM EXAMPLES.

REM YOU BEGIN WITH A 'SCRIPT' BLOCK. IT CONTAINS ALL
REM SCRIPTDATA.

SCRIPT "EXAMPLEI"

REM NEXT IS THE BUSNOTE BLOCK. IT TELLS WHICH
REM COMMUNICATIONS BUS TO USE AND SETS VARIOUS
REM COMMUNICATIONS PARAMETERS.

GPIB
EOM = 10;
END

REM IF A SCRIPT HAS ANY CONTROLS, A 'VIEW' BLOCK IS
REM REQUIRED.

VIEW "CHANNELA"

REM EACH CONTROL IS IN A 'CONTROLGROUP' BLOCK. YOU CAN
REM PLACE MORE THAN ONE CONTROL IN A 'CONTROLGROUP'
REM BLOCK. YOU MUST HAVE AT LEAST ONE 'CONTROLGROUP'
REM IN A VIEW.

2-2 Instrument Script Language Descriptions

CONTROLGROUP
REM A CONTROL (THE GRAPHICAL PART) IS DEFINED IN A
REM 'CONTROL' BLOCK. YOU ALSO DEFINE THE NAME OF THE
REM CONTROL VARIABLE, ITS DATA TYPE, AND ITS LOCATION
REM IN THE 'CONTROL' BLOCK.

CONTROL FREQUENCYA:FLOAT EDITBOX @1,2

REM THE SIZE, TITLE, AND DEFAULT VALUES OF A CONTROL
REM ARE DEFINED WITHIN THE 'CONTROL' BLOCK.

NUMROWS 1;
NUMCOLS 12;
CONTROLTITLE "FREQUENCY A";
STRING "10000";
END

REM A 'SETTING' BLOCK TAKES INFORMATION FROM THE
REM FRONT PANEL OR TEST PROGRAM FOR ALL OF THE C
REM ONTROL VARIABLES DEFINED IN A 'CONTROLGROUP'
REM BLOCK.

SETTING
CONT -> "FREQA: ",FREQUENCYA,";";
END

REM A 'MEASUREMENT' BLOCK TAKES INFORMATION FROM THE
REM CONTROL VARIABLES DEFINED IN A 'CONTROLGROUP'
REM BLOCK AND RETURNS IT TO THE FRONT PANEL OR TEST
REM PROGRAM.

MEASUREMENT
CONT -> "FREQA?";
INST -> "FREQA:",FREQUENCYA,";";

END
END
END
END

The example shows some of the syntax points. All lines beginning with the
keyword REM are comments.

TekTMS Instrument Front Panel Developer User Manual 2-3

Script Block

The SCRIPT block is the complete script (or it can be defined as the outer-
most block containing a script). The keywords for this block are SCRIPT
and END. SCRIPT is followed by the script identifier. The script identifier is a
character string enclosed within double quotes.

The SCRIPT block, in its entirety, communicates with the instrument as a
driver. A script block consists of a number of internal blocks: the BUSNOTE
block, the LEARN block, and the VlEW block. The LEARN block and VlEW
block are optional, as shown in the following example script:

SCRIPT "SCRIPTIDl"

GPIB
EOM = 13,lO;
EOI = 1;
TIMEOUT = 1000;

END
END

This example defines a complete script. There are no controls defined, but a
simple script such as this one can be used to establish a communications
path between a test program and an instrument for TRANSFER DATA steps
in an IPG test procedure (i.e., VARIABLE TO INSTRUMENT or INSTRUMENT
TO FILE transfers). Refer to Section 5, Advanced Applications, in the Interac-
tive Procedure Generator Users Manual, under the Communicating with an
Instrument which does not have a Driver (.ISD) File topic for additional in-
formation. The example script can also be used to gain access to the TALW
LISTEN function of a front panel. Refer to the TalklListen description in
Section 4, Menus, of the Interactive Procedure Generator User Manual, under
the Instrument Front Panel Menu description, for further information.

BUSNOTE Block The purpose of the BUSNOTE block is to select the bus type and advise the
script interpreter of interface setting parameters for the corresponding bus.
This subsection describes the parameters and the corresponding settings
that can be made within the BUSNOTE block. Only one bus (GPIB, VXI, etc.)
can be used. The valid keywords for a BUSNOTE block and their definitions
are as follows:

m GPlB - National lnstruments GPlB interface for the PC

VXIINTERNAL - Tektronix and Colorado Data Systems embedded VXI
controllers

VX5520 - Tektronix VX5520 GPlB interface and Resource Manager for
VX I

RS232 - COMl or COM2 ports on the PC

w MXI - National lnstruments MXI PC to VXI interface.

CDSBUS - Colorado Data System 53 Series embeded controllers.

2-4 Instrument Script Language Descriptions

The general syntax for a BUSNOTE block is shown in the following example:

GPIB

EOM = number, number;
EOI = 1 (YES) 10 (NO);
TIMEOUT = number;

END

Note that the equal sign (=) and the semicolon (;) are required in the syn-
tax. There is a different set of parameters for each bus type. The parameters
for each bus type and their description follows.

GPlB Parameters

EOM (End Of Message) - This parameter specifies a character or
characters automatically appended to the end of a device-dependent mes-
sage on output. The characters to be appended are the ASCII equivalent of
the numbers specified in the argument. EOM characters found in the input
from an instrument will terminate the Read. The End of Message syntax is as
follows:

EOM = n,m;

The following are examples of EOM:

EOM = 0; (turns off EOM function)
EOM = 1 0 ; (LF termination)
EOM = 13, lO; (CRILF termination)

The above examples illustrate three possibilities: zero (OFF); one character
specified; and two characters specified.

EOI (End Of Input) - This parameter determines if EOI is asserted on the
last byte of messages sent by the controller to the instrument, or by the
instrument to the controller. The following examples show the use of EOI:

EOI = 1;
E O I = 0 ;

(EOI is asserted)
(EOI is not asserted)

TIMEOUT -This parameter is specified in milliseconds. It determines the
wait period before a timeout is reported. Since some GPlB control software
does not support a continuous range, the script interpreter will use the
closest value that is at least as great as the specified value. The following
example shows the use of TIMEOUT

TIMEOUT = 1E4; (TIMEOUT value of 10 seconds)

TekTMS Instrument Front Panel Developer User Manual 2-5

Default SETTlNGs -The default settings for the parameters EOM, EOI
and TIMEOUT are as follows:

EOM = 0;
EOI = 1;
TIMEOUT = 10000;

RS232 Parameters

RS2 3 2
EOM = 0;
BAUD = number; (300,600, 1200 ... 9600,19200)
PARITY = 0 (EVEN) I 1 (ODD) 1 2 (NONE) ;

FLOWCONTROL = 0 (NONE) / 1 (XONIXOFF)) / 2 (DTRIDSR-
hardware) / 3 (RTSICTS);

STOPBITS = 1 / 2 1 3 (is 1.5);
DATABITS = 4 / 5 1 6 1 7 1 8 ;

END

Default SETTlNGs -The default settings for the RS232 parameters are
as follows:

BAUD = 1200;
PARITY = 2; (NONE)
FLOWCONTROL = 1 ; (XONIXOFF)
STOPBITS = 1;
DATABITS = 7;
EOM = 0;

VX5520 Bus Parameters

The parameters for the VX5520 Interface are the same as GPIB (substitute
VX5520 for GPIB) as in the following example script:

VX5520
EOM = 13,lO;
EOI = 1; (1 = YES, 0 = NO)
TIMEOUT = 1E4 ; (TIMEOUT value of 10 seconds)

END

Default SETTlNGs - The default settings for the VX5520 Bus parameters
are as follows:

EOM = 0;
EOI = 1;
TIMEOUT = 10000;

2-6 Instrument Script Language Descriptions

NOTE

It is important to use a BUSNOTE type of VX5520 if you are using a
VX5520 as the VXI Resource Manager and a GPlB interface to VXI
instruments.

VXI Internal Bus Parameters

The parameters for VXI internal bus are shown in the following example:

VXIINTERNAL
EOM = 0;
END

Default SETTlNGs -The default settings for the VXI Internal Bus parame-
ters are as follows:

EOM = 0:

MXI Bus Parameters

The parameters for MXI bus are shown in the following example:

MXI
EOM = 10;
TIMEOUT = 10000;

END

Default SETTlNGs - The default settings for the MXI Bus parameters are
as follows:

EOM = 0;
TIMEOUT = 10000;

CDS 53 Series Parameters

The parameters for CDS 53 Series parameters are shown in the following
example:

CDSBUS
EOM = 13,lO;
TIMEOUT = 5000;

END

TekTMS Instrument Front Panel Developer User Manual 2-7

Default SETTINGS -The default settings for the CDS 53 Series bus
parameters are as follows:

EOM = 0;
TIMEOUT = 10000;

LEARN Block The LEARN block prov~des a way to create IPG test procedure steps that will
reset an instrument to a state you specify on subsequent executions of the
test procedure. You do thls s~mply by creating a LEARN step that contalns a
SETTING block and a MEASUREMENT block.

The SETTING block is executed when a test procedure with a LEARNED
SETTING step is executed.

The MEASUREMENT block is executed when requested by the user during
test program creation in IPG.

The LEARN SETTING block does not describe a graphical, interactive con-
trol, but is used to store the instrument state in a test program for later
retrieval.

The following examples show the use of the LEARN block:

REM THIS EXAMPLE SHOWS AN ASCII LEARN SETTING BLOCK FOR
REM A TEKTRONIX DM5010 DIGITAL MULTIMETER. THERE IS NO
REM GRAPHICAL DESCRIPTION, AS THIS CONTROL DOES NOT
REM APPEAR ON THE SCREEN.

LEARN LEARNSTR:STR ASCII
SETTING
REM SEND THE ENTIRE LEARNED STATE STRING TO THE
REM INSTRUMENT.
CONT -> LEARNSTR;
END
MEASUREMENT
REM QUERY THE INSTRUMENT FOR ITS ENTIRE SETTING STATE
REM AND STORE THE DATA IN THE CONTROL VARIABLE
REM LEARNSTR.
CONT -> "SET?";
INST -> LEARNSTR;

END
END

REM THIS EXAMPLE SHOWS A BINARY LEARN SETTING BLOCK FOR
REM A TEKTRONIX DM5010 DIGITAL MULTIMETER. THERE IS NO
REM GRAPHICAL DESCRIPTION, AS THIS CONTROL DOES NOT
REM APPEAR ON THE SCREEN.

LEARN LEARNSTR:STR BINARY
SETTING
REM SEND THE ENTIRE LEARNED STATE STRING TO THE
REM INSTRUMENT.

2-8 Instrument Script Language Descriptions

CONT -> LEARNSTR;
END
MEASUREMENT
REM QUERY THE INSTRUMENT FOR ITS ENTIRE SETTING STATE
REM AS A BINARY STRING (THIS IS SHORTER THAN AN ASCII
REM STRING) AND STORE THE DATA IN THE CONTROL VARIABLE
REM LEARNSTR.
CONT -> "LLSET?";
INST -> LEARNSTR;

END
END

The difference between an ASCll LEARN block and a BINARY LEARN block,
is that you can edit the contents of the ASCll string when creating a
LEARNED SETTING step, but you cannot edit the contents of a BINARY
string.

When one of the example scripts is used, the MEASUREMENT block gets a
measurement from an active instrument and places it into the variable
specified in the script. When a LEARN SETTING step is created in the IPG
test procedure and the test procedure is run, only the SETTING block is
executed, allowing you to set the instrument.

The LEARN block is used with the Learn SETTING ... menu item from the
Step menu selection in the IPG Instruments Front Panel (for further informa-
Ton, refer to the Instrument Front Panel Menu description in Section 4, Me-
nus, of the IPG Users Manual).

VIEW Block The keywords for a VlEW block are VlEW and END. The keyword VlEW is
followed by the VlEW identifier. The VlEW identifier is a character string
enclosed within double quotes. In a script, there may be any number of
VlEW blocks. One VlEW block corresponds to one logical instrument view.

The VlEW block consists of a number of statements and blocks. The first
entries may be TEXT or CONNECT statements (or both). The blocks in the
VlEW block are CONTROLGROUP blocks.

A logical instrument view contains graphical controls such as PUSHBUT-
TONS, CHECK BOXES, etc. These graphical controls allow interaction with
the hardware and the bus.

There are several approaches to assigning functions to different views (The
issue of fully functional vs. application-oriented front panels is explained in
Section 1, General Information .) :

Don't put too many controls into one View as it creates the same prob-
lems as when actual hardware front panels have too many controls in a
small space. Keep the View simple.

A fully functional or general purpose approach might parcel views by the
actual partitioned functionality of the instrument front panel (e.g., a DSO
might have a Channel 1 view, a Channel 2 view, a Timebase view, etc.).

TekTMS Instrument Front Panel Developer User Manual 2-9

An application-oriented approach might put all the functions needed to
perform a particular action in one view, and those for another action in
another view. (e.g., in a DSO, all the functions required to acquire a
waveform on channel 1 might be presented in one view, and all those
needed to acquire a waveform on channel 2 might be presented in
another view. The time base and trigger functions would be included as
required and duplicated on the two views).

On an interactive front panel, a group of measurements might be placed
in a different view from control settings so that when the measurements
are updated, the controls are not updated.

Implementation of a set of controls might be simplified by using several
views. For example, if the DM5120 had one range control that controlled
the ranges for all functions, it might be included in a view for each
function (DCV, ACV, OHMS, etc.), and be given an appropriate label
corresponding to the function associated with the view.

= Don't build a view that requires the entire display screen (maximized).

Multiple Views

Multiple views in the same script should use approximately the same surface
area for the view layout to preclude the user resizing the window to see all of
the controls each time a new view is selected. When views are not the same
size, the first view (default) should be the largest so the user doesn't acci-
dently miss controls that might be outside the window of the initial display
area. Also any controls that are duplicated from view to view should be laid
out in the same relative position.

Display Types

If an instrument front panel has been developed for an EGA display and it
fills a large part of the display, it may not be completely displayed on a CGA
display. Also, a VGA display provides a smaller amount of display area than
a comparable EGA display. The user should be aware that different graphics
adapters provide different display resolutions, and if a front panel is to be
used on systems with different graphics adapters, it should be designed for
the system with the lowest resolution (smallest display area).

View Layout

All controls must fit within a 27 character high by 80 character wide area
(Instrument Script Language character coordinates). This assures that all
controls are visible on the smallest available window display, which is the
640 x 480 VGA mode that provides 640 x 41 0 pixels in the white space of
a maximized front panel window. A 640 x 480 VGA mode displays charac-
ters in 8W x 15H cells, which reduces the number of rows of characters
that can be displayed. Controls should be spaced far enough apart on a
front panel so that they are perceived as separate controls. Each control
should be surrounded by several characters of space to promote "readabil-

2-10 Instrument Script Language Descriptions

ity" of the panel. You may find it easier to layout the front panel to scale on
graph paper before implementing it in a script. The units for front panel
layout are the number of characters from the top left corner of the display.

Coordinate System

The IPG software uses character spaces to set coordinates. Starting from
the top left corner of your display, the coordinates are 0,o. They move right
horizontally to the maximum number of columns; and down vertically to the
maximum number of rows. Coordinates can be entered into the script, or
can be function values. The coordinates can also be decimal numbers. For
example, you can place a control at 3.3,4.5, if desired. You can use several
digits of precision if you desire, but tenths of character sizes are usually
adequate.

TEXT or Connect Statement

The TEXT or CONNECT statement (either is started with a separate key-
word) can appear in a VlEW block. A TEXT or CONNECT statement is used
to display text or to draw lines on the screen of the logical instrument front
panel view. The body of each statement may contain one or more sets of
TEXT and CONNECT points. TEXT or CONNECT statements must come
before CONTROLGROUP blocks.

Following are examples of TEXT and CONNECT statements:

TEXT 'text to be displayed" @ 5 , 5 ;
CONNECT (5 , l o) , (1 0 , l O) ;

This example defines text to be displayed beginning at character spaces
(5, 5); and specifies drawing a line between display coordinates (character
space points) 5,10 and 10,lO.

More than one TEXT or CONNECT statement can be included in a VlEW
block.

NOTE

Notice that these statements require a terminating semicolon.

TEXT -The following syntax displays one line of text:

TEXT "stringof text " @ X, Y;

As an example:

TEXT "THIS IS TEXT" @ 5 , 1 0 ;

This example causes THIS IS TEXT to be displayed, beginning at charac-
ter space location 5, 10.

TekTMS Instrument Front Panel Developer User Manual 2-7 7

Connect -The following syntax draws a line between end points:

where the x and y values of the points are given in character spaces. They
are relative to the upper left hand corner of the user window, where x = 0,
and y = 0.

Examples:

CONNECT (5 , 1 0) , (l o r l o) ;

This example draws a line between the two points: (5, 10) and (1 0, 10).

CONNECT (3 , 3) , (1 0 , 3) , (1 0 , 1 0) , (3 , 1 0) , (3 , 3) ;

This example causes a line to be drawn from the point (3, 3) to (1 0, 3) then
to (1 0, 10) to (3, 10) and then back to (3, 3). The result is a rectangle.

CONTROLGROUP
Block

A CONTROLGROUP block is a collection of at least one CONTROL block
and, optionally, one SETTING and one MEASUREMENT block that define
the control functions in an instrument view. The CONTROLGROUP must
contain at least one CONTROL block, but it may have more than one. A
CONTROLGROUP block without either a SETTING or MEASUREMENT
block will not be able to send data to or receive data from an instrument.
Each CONTROLGROUP block specified has the ability to define a SETTING
and/or a MEASUREMENT block to perform when the control is manipulated
interactively or used in a test program. In a SETTING block, data is taken
from the front panel or test procedure and sent to the SETTING block. In a
MEASUREMENT block, data is gathered from the instrument and returned
to the front panel or test procedure.

It is important to remember that SETTING blocks accept data and MEA-
SUREMENT blocks return data. SETTING blocks do not update the front
panel control, while MEASUREMENT blocks do not use the value of the front
panel control in the measurement.

Another important consideration about scripts is that they do not execute
sequentially. They do not start at the first line and execute to the last line of
the script. Each control definition will execute either the SETTING or MEA-
SUREMENT block independently, depending on the level of front panel to
instrument interaction, type of instrument step executed, and which controls
are manipulated.

The following is an example of a CONTROLGROUP block with CONTROL,
SETTING, and MEASUREMENT blocks defined:

CONTROLGROUP
CONTROL FREQUENCYA:FLOAT EDITBOX A2,2
CONTROLTITLE "FREQUENCY A";
STRING " 1 0 0 0 0 " ;
NUMCOLS 1 2 ;
NUMROWS 1;

Instrument Script Language Descriptions

END
SETTING
CONT -> "FREQA: ",FREQUENCYA,";";
END
MEASUREMENT
CONT -> "FREQA?";
INST -> "FREQA: ",FREQUENCYA,";";;

END
END

In this example, when the front panel is in "full Interaction" mode, and the
ENTER keyboard key is press when the input focus is on the EDITBOX
control, the SETTING block will send the string FREQA : 100 0 0 ; to the
instrument. If the control is saved as a SETTING step in a test procedure,
and the value of the control was 10000 when the step was saved, the same
string will be sent to the instrument when this step is executed. The value of
the CONTROL variable FREQUENCYA will be set to 10000 and the SETTING
block will be executed.

If the front panel is in "full interaction" mode when the ENTER key is pressed,
the SETTING block is executed, and then the MEASUREMENT block is
executed which updates the value of the EDITBOX to reflect the value re-
turned from the instrument in response to the FREQA? query. If the response
from the instrument is FREQA : 10 0 0 0 . 0 ; , then the front panel EDITBOX
will be updated with the value 10 0 0 0 .O.

More detailed information about the various blocks and instrument dialogs is
presented later in this section. For further information about the front panel
window, refer to the Interactive Procedure Generator Users Manual.

Control Block

Since a CONTROL block describes only one control, each control on an
instrument front panel display must have a separate CONTROL block. The
first line of a CONTROL block contains the keyword CONTROL followed by a
CONTROL ID (control variable), a colon (:), a variable type (INTeger (a long),
FLOAT (a double), or STRing), the control type (TEXTBOX, EDITBOX, etc.),
and the controls reference position (relative X, Y coordinate).

A CONTROL variable name is limited to 15 alphanumeric characters, and
must begin with an alpha character. The following example defines a TEXT-
BOX control at location 2 , 2 0 that accepts and shows integer data. COUNTA
is the name of the CONTROL.:

CONTROL C0UNTA:INT TEXTBOX @2,20

Control ID

Once you declare a Control ID, it becomes a global variable that can be
accessed by any subsequent SETTING or QUERY block (MEASUREMENT
block) in the script. A common use of this global variable feature is for
defining a control that can display an error message for an operator using

TekTMS Instrument Front Panel Developer User Manual 2-13

the front panel interactively. The following example script makes use of this
feature by defining a control to display an error message that is defined and
implemented by another control.

SCRIPT "SCRIPTl"
GPIB
END
VIEW "VIEW1"
REM DEFINE THE ERROR DISPLAY CONTROL.
CONTROLGROUP
CONTROL ERRMSG:STR TEXTBOX @ 1, 2
TITLE "ERROR MESSAGE";
NUMROWS 1; NUMCOLS 20;
END
QUERY
REM FORCE AN UPDATE OF THE CONTROL VALUE.
ERRMSG = ERRMSG;
END
END
CONTROLGROUP
CONTROL TW0:INT CHECKBOX @ 3, 5
STRING "CLICK HERE";
REM CAUSE THE ERRMSG QUERY BLOCK TO EXECUTE.
UPDATELIST ERRMSG;
END
SET
REM GIVE THE ERROR MESSAGE A VALUE.
ERRMSG = "ERROR 0 " ;
END
END
END
END

In this example, a TEXTBOX control to display an error message is declared
using the Control ID ERRMSG and front panel TITLE "ERROR MESSAGE".
This error message display control must be the first control defined in the
VIEW or script, so that any errors detected in subsequent steps can be
detected.

Next, a CHECKBOX control using the Control ID TWO and front panel title
"Click Here" is declared to cause the system to locate the MEASUREMENT
step for ERRMSG, the measurement to be taken, and execute the assignment
of the error message and the updating of the TEXTBOX display.

The QUERY block is required., since UPDATELIST only updates blocks that
contain a QUERY block. If it is missing, the control will not be updated by
the UPDATELIST ERRMSG statement.

Script Design Considerations - There is a restriction that must be
considered when one control sets or reads the value of the Control ID of
another control. When writing a script, a Control ID can be set only if it has
been previously defined with a CONTROL statement earlier in the script.

- -

2-14 Instrument Script Language Descriptions

CONTROLGROUP Types

Each CONTROL block defines a single control, and defines the variable and
variable type used for communications with that control.

There are several types of front panel controls. The CONTROL block defines
one of the controls and control data types listed in Table 2-1.

Table 2-1 : CONTROL Block

CONTROL CONTROL Data Type

TEXTBOX INT, STR, FLOAT

EDITBOX INT, STR, FLOAT

LISTBOX INT, STR

CHECKBOX INT, STR

RADIOBUTTON INT, STR

PUSHBUTTON
- - -

INT, STR

WAVEFORMDISPLAY SIR, WAVE

The INTeger value for a CHECKBOX, RADIOBUTTON, or PUSHBUTTON is
either 1 (ON) or 0 (OFF). The string value for these controls can be any
string necessary for the function of the control SETTING or MEASUREMENT
blocks.

Data values for a TEXTBOX or EDITBOX can be any value required by the
control function.

The INTeger value for a LISTBOX is the index of the selected LISTBOX item.
The indices run from 1 to the number of entries in the LISTBOX. The string
value of the LISTBOX is either the string displayed in the LISTBOX, or the
corresponding TOSCRIPT string.

CONTROLGROUP Type Construct Definitions -Table 2-2 defines the
control constructs used in the following CONTROLGROUP type discussions.

Table 2-2: Construct Definitions

Name Syntax Description

CONTROL- CONTROLTITLE "tit- titlestring is the string to be dis-
TITLE lestring "; played above the TEXTBOX, EDIT-

BOX, or LISTBOX (no default)
-- -

DEFAULTPOS DEFAULTPOS n; n is the default selected row in a
LISTBOX (default 1)

NUMCOLS NUMCOLS n; n is the number of columns wide
of the TEXTBOX, EDITBOX, or
LISTBOX (default 10)

TekTMS Instrument Front Panel Developer User Manual 2-15

Table 2-2: Construct Definitions (Cont.)

Name Syntax Description

NUMROWS NUMROWS n; n is the number of rows high of
the TEXTBOX, EDITBOX, or LIST-
BOX (default 1)

ONEOF- ONEOFGROUP groupname is the name of the
GROUP "groupname" group of controls to which a

CHECKBOX or RADIOBUTTON
belongs (no default)

SCROLL- SCROLLHORZ YES specifies a horizontal scroll
HORZ YES<N> I NO; bar for a TEXTBOX, EDITBOX, or

LISTBOX; NO specifies no hori-
zontal scroll bar (default NO)

SCROLLVERT SCROLLVERT YES specifies a vertical scroll bar
YES<N> JNO; for a TEXTBOX, EDITBOX, or

LISTBOX; NO specifies no vertical
scroll bar (default NO)

STATE STATE ON<N> IOFF; The default state of a CHECKBOX
or RADIOBUTTON (default OFF)

STRING STRING "datastring"; datastring is the string to display in
the TEXTBOX, EDITBOX, or LIST-
BOX; or the string to be displayed
as the label of the CHECKBOX,
PUSHBUTTON, or RADIOBUT-
TON (no default)

TITLE TITLE "titlestring "; titlestring is the string to be dis-
played above the TEXTBOX, EDIT-
BOX, or LISTBOX (no default)

TOSCRIPT TOSCRIPT string is the string that will be
"string,["stringfi,[...I] placed in the CONTROL vari-

able(~) in a LISTBOX

TOSCRIPT- TOSCRIPTOFF "of- offstring is a string that will be
OFF fstring"; placed in the CONTROL variable

when the CHECKBOX or RADIO-
BUTTON is turned OFF or deacti-
vated (no default)

TOSCRIPTON TOSCRIPTON "datas- datastring is a string that will be
tring" ; placed in the CONTROL variable

when the PUSHBUTTON in ma-
nipulated (no default)

TOSCRIPTON "on- onstring is a string that will be
string" ; placed in the CONTROL variable

when the CHECKBOX or RADIO-
BUTTON is turned ON or activated
(no default)

2-16 Instrument Script Language Descriptions

Table 2-2: Construct Definitions (Cont.)

Name Syntax Description

UPDATELIST UPDATELIST contro- controlid is the name of another
lid [,controlid [,]I; control in this view to update

when the control whose script
contains the UPDATELIST is ma-
nipulated. To update a control, the
MEASUREMENT block actions for
the control whose script contains
the UPDATELIST are executed.
(no default)

TEXTBOX

A TEXTBOX is a rectangular area in which text is displayed and can be used
for measurement displays on a front panel. If you do not need to modify the
measurement value reported from the instruments, use a TEXTBOX. The
following illustration is an example TEXTBOX graphic.

Id :

The following script was used to create the example TEXTBOX graphic:

CONTROLGROUP
CONTROL 1D:STR TEXTBOX @ 5, 10
NUMROWS 1;
NUMCOLS 10;
SCROLLHORZ YES;
CONTROLTITLE "ID:";
END
MEASUREMENT
CONT ->"ID?";
INST ->ID;

END
END

In the above example, a CONTROL block with a TEXTBOX is defined with its
number of columns and rows. The TEXTBOX has a horizontal scroll bar and
a control title ID: ; and is empty. When the front panel is updated, the TEXT-
BOX will display the contents of the control variable ID, which is the output
returned by the MEASUREMENT block. The variable and type are declared
with the control type (in the above example CONTROL ID: STR TEXTBOX @

5, 10).

TekTMS Instrument Front Panel Developer User Manual 2-17

The available constructs in a TEXTBOX are:

CONTROLTITLE
NUMCOLS
NUMROWS
SCROLLHORZ
SCROLLVERT
STRING
TITLE

The definitions of these constructs are given in Table 2-2, in this section.

The variable type can be STR, INT, or FLOAT.

An EDITBOX is a rectangular area in which you can enter and edit text and
can be used for setting and reporting numeric values for an instrument (i.e.,
the frequency of a signal generator). The following illustration is an example
of the EDITBOX graphic.

AUE:

The following script was used to create the example EDITBOX graphic:

CONTROLGROUP
CONTROL NUM:FLOAT EDIT @ 1 0 , 1 0
NUMROWS 1 ;

NUMCOLS 2 3 ;
CONTROLTITLE "AVE:";
SCROLLHORZ YES;
END
SETTING
CONT ->"AVE",NUM,";";
END
MEASUREMENT
CONT ->"AVE?";
INST ->"AVEn,NUM,";";

END
END

The example defines an EDITBOX with its number of columns and rows. It
has a horizontal scroll bar and the title AVE: displayed above the box.
Initially, the EDITBOX is empty. The variable and type are declared with the
control type (in the example, CONTROL NUM: FLOAT EDIT @ 1 0 , 10).

2-78 Instrument Script Language Descriptions

When the SETTING block is evaluated, the number in the EDITBOX is as-
signed to the CONTROL variable NUM. The number is encoded with the
string constant and sent to the instrument. For example, if NUM = 100, then
"AVE 1 0 0 " is sent.

When the MEASUREMENT block is evaluated, the number to be displayed
in the EDITBOX is taken from the CONTROL variable NUM. The instrument is
queried for the value of AVE and its string in the form "AVE NUM" ; . The
value of NUM is extracted from the instrument response.

The available constructs for an EDITBOX are:

CONTROLTITLE SCROLLVERT
NUMCOLS STRING
NUMROWS TITLE
SCROLLHORZ UPDATELIST

The definitions of these constructs are given immediately following the
RADIOBUTTON description, in this section.

The variable type can be STR, INT, or FLOAT

A LISTBOX is a scrollable list of strings representing instrument controls or
measurements and can be used to give the front panel user a choice of a
limited number of settings for an instrument. The following illustration is an
example of a LISTBOX graphic giving a choice of operating modes for a
digital multimeter:

F u n c t i o n :

The following script is used to create the example LISTBOX graphic:

CONTROLGROUP
CONTROL PARAM1:STR LISTBOX @ 5, 10
NUMROWS 3;
NUMCOLS 8;
CONTROLTITLE "FUNCTION:";
SCROLLVERT YES;
STRING "DCV","OHMS","DIODE","ACV","ACDC";
END
SETTING
CONT ->PARAMI;
END
MEASUREMENT
CONT ->"FUNC?;
INST ->"FUNC",PARAMl,";";

TekTMS Instrument Front Panel Developer User Manual 2-19

END
END

The example defines a LISTBOX with the number of columns, rows, a verti-
cal scroll bar, a title FUNCTION and the strings displayed in the LISTBOX.
The variable and type are declared with the control type (in the example,
CONTROL PARAMI: STR LISTBOX @ 5 , 10).

When the SETTING block associated with a LISTBOX is evaluated, the string
selected in the LISTBOX is assigned to the control variable PARAMI.

When the MEASUREMENT block is evaluated, the string to be highlighted
will be taken from the control variable PARAMI. If the variable does not
match any string in the STRING block, no string in the LISTBOX will be
highlighted. The match is case sensitive.

The available constructs for a LISTBOX are:

CONTROLTITLE SCROLLVERT
DEFAULTPOS STRING
NUMCOLS TITLE
NUMROWS UPDATELIST

And, if the control type is STR:

The definitions of these constructs are given immediately following the
RADIOBUTTON description, in this section.

The variable type can be STR or INT.

PUSHBUTTON

A Pushbutton is a box that contains a string representing an action and is
used for actions that require no response (i.e., the initialization function of an
instrument). A Pushbutton has only a SETTING block, and when it is manip-
ulated (pushed) is always in the ON state.

Following is an example of a PUSHBUTTON graphic:

The following script was used to create the example PUSHBUTTON graphic:

CONTROLGROUP
CONTROL 1NIT:STR PUSHBUTTON @5,15
STRING "INIT";
TOSCRIPTON "INIT";
END
SETTING
CONT ->INIT;
END
END

2-20 Instrument Script Language Descriptions

This example script defines a PUSHBUTTON that will have the text INIT
inside it. The variable and type are declared with the control type (in the
example, CONTROL INIT : STR PUSHBUTTON @5,15).

When the SETTING block associated with the PUSHBUTTON is evaluated,
the string defined by TOSCRIPTON is assigned to the control variable.

In the following alternative example, the PUSHBUTTON uses a control
variable of the type INT.

CONTROLGROUP
CONTROL 1NIT:INT PUSHBUTTON @5,15
STRING "INIT";
END
SETTING
CONT ->"INIT"
END
END

This example script also defines a PUSHBUTTON that will have the text
INIT inside it. Again, the variable and type are declared with the control
type (in the example, CONTROL INIT : STR PUSHBUTTON @5,15). This
example takes advantage of the fact that when a PUSHBUTTON is manipu-
lated, the value of the control variable is always 1, and simply sends the
constant string INIT to the instrument.

A PUSHBUTTON should not have a MEASUREMENT block. If it does, the
MEASUREMENT block will not be evaluated.

The available constructs for a PUSHBUTTON are:

STRING
UPDATELIST

And, if the control type is STR:

The definitions of these constructs are given in Table 2-2, in this section.

The variable type can be STR or INT.

CHECKBOX

A CHECKBOX is a small square with an identifying character string to the
right. When a CHECKBOX is activated, an "x" appears in the square. A
CHECKBOX is used to indicate the state of a control, either ON or OFF. A
CHECKBOX might be used to indicate whether the output of a signal gener-
ator is turned ON or OFF.

Following is an example of a CHECKBOX graphic:

TekTMS Instrument Front Panel Developer User Manual 2-2 7

The following script was used to create the example CHECKBOX graphic:

CONTROLGROUP
CONTROL LFR:STR CHECKBOX @10,20
STRING "LFR";
TOSCRIPTON "LFR ON";
TOSCRIPTOFF "LFR OFF";
END
SETTING
CONT ->LFR;
END
MEASUREMENT
CONT ->"LFR?";
INST ->LFR,";";

END
END

This example defines a CHECKBOX with the text LFR displayed next to it.
The variable and type are declared with the control type (i.e., CONTROL
LFR:STR CHECKBOX @ 10,20).

When the SETTING block is evaluated, if the CHECKBOX is activated, the
string defined by the key word TOSCRIPTON is assigned to its control
variable; if the CHECKBOX is not activated, the string defined by the key
word TOSCRIPTOFF is assigned to the control variable.

When the MEASUREMENT block is evaluated, the control variable will be
used to update the state of the CHECKBOX. If the control variable matches
the string defined by the key word TOSCRIPTON, the CHECKBOX will be
activated; if it does not match, the CHECKBOX will not be activated.

The following alternative example of a CHECKBOX script uses a control
variable of the type INIT

CONTROLGROUP
CONTROL LFR:INT CHECKBOX @5,15
STRING "LFR";
END
SETTING
IF (LFR == 1) THEN
CONT -> "LFR ON";
ELSE
CONT -> "LFR OFF";
ENDIF
END
MEASUREMENT
TEMPVAR TEMPSTR:STR;
CONT -> "LFR?";
INST -> TEMPSTR,";";
IF (TEMPSTR == "LFR ON") THEN
LFR = 1
ELSE
LFR = 0
ENDIF

2-22 Instrument Script Language Descriptions

END
END

This example also defines a CHECKBOX with the text LFR displayed next to
it. The variable and type are declared with the control type (i.e., CONTROL
LFR:INT CHECKBOX @ 5,15).

This example takes advantage of the fact that when a CHECKBOX is manip-
ulated, the value of the control variable is 1 if the CHECKBOX is activated,
and 0 if it is not activated. The SETTING block checks the value of the
control variable and sends the appropriate command to the instrument. The
MEASUREMENT block checks the value of the query and sets the control
variable to either 1 (ON) or 0 (OFF). Notice that the MEASUREMENT block
uses a temporary string variable to help with the comparison.

The available constructs for a CHECKBOX are:

ONEOFGROUP
STATE
STRING
UPDATELIST

And, if the control type is STR:

The definitions of these constructs are given immediately in Table 2-2, in this
section.

The variable type can be STR or INT.

A RADIOBUTTON is a small circle with a character string to the right of the
circle. When selected, the circle contains a black dot. RADlOBUTTONs are
used only in groups to represent mutually exclusive selections. A RADIO-
BUTTON is used to indicate the state of a control, either ON or OFF. A group
of RADlOBUTTONs show the state of mutually exclusive instrument controls
or states. For example, a group of RADlOBUTTONs could be used to show
which function of a function generator is currently active (i.e., sine, square,
triangle, etc.).

Following is an example of the RADIOBUTTON graphic:

0 L F R

The following script was used to create the example RADIOBUTTON graph-
ic:

CONTROLGROUP
CONTROL LFR:INT RADIOBUTTON @ 1 0 , 2 0
STRING "LFR" ;

TekTMS Instrument Front Panel Developer User Manual 2-23

REM RADIOBUTTONS MUST CONTAIN A ONEOFGROUP DEFINITION.
ONEOFGROUP " FREQ" ;
END
SETTING
IF (LFR == 1) THEN
CONT ->"LFR ON";
ELSE
CONT ->"LFR OFF";
ENDIF

END
MEASUREMENT
TEMPVAR FROM1NST:STR;
CONT ->"LFR?";
INST ->FROMINST;
IF (FROMINST == "LFR ON;") THEN
LFR = 1;
ELSE
LFR = 0;
ENDIF

END
END

The example defines a RADIOBUTTON with the text LFR next to it. The
variable and type are declared with the control type (i.e., CONTROL
LFR:INT RADIOBUTTON @ 10, 20).

When the SETTING block is evaluated, if the RADIOBUTTON is ON, a 1 is
assigned to the control variable; if the RADIOBUTTON is OFF, a 0 is as-
signed to the control variable.

When the MEASUREMENT block is evaluated, the control variable is used to
update the state of the RADIOBUTTON. If the output variable is 1, the RA-
DIOBUTTON will be ON; otherwise, the RADIOBUTTON will be OFF.

NOTE

The RADlOBUrrON being turned OFF has its SETTING block
executed first; then the SETTING block of the button being turned
ON is executed.

The available constructs for a RADIOBUTTON are:

ONEOFGROUP
STATE
STRING
UPDATELIST

And, if the control type is STR:

The definitions for these constructs are on the following page.

2-24 Instrument Script Language Descriptions

The variable type can be STR or INT.

If a RADIOBUTTON is type STRING (STR) then the TOSCRIPTON and
TOSCRIPTOFF constructs must be used.

The WAVEFORMDISPLAY control shows a variable of the type WAVEFORM
and gives you control over how the waveform is acquired and viewed.

The ISD Script Language contains two functions, WAVEFORMTOADIF and
WAVEFORMTOVAR, to convert most instrument specific data formats into a
WAVEFORM variable that can be used and displayed by TekTMS. The
WAVEFORMDISPLAY control does not appear on the screen, but appears
as an icon at the bottom of the screen when an instrument view containing a
waveform control is shown. The display can be viewed by expanding the
icon. If no waveform has been captured the display field is blank. For further
information regarding waveform display, refer to the Interface Program
Generator Users Manual. The contents of the variable cannot be modified by
the display.

The data type of a WAVEFORMDISPLAY control is either WAVE or STR. The
variable and type are declared with the control type. If you use the data type
of WAVE you must use the function WAVEFORMTOVAR to convert the
instrument specific data. If you use the data type of STR, you must use the
function WAVEFORMTOADIF to convert the instrument specific data. The
control string is the name of the file that contains the acquired waveform
data. The preferred type to use is WAVE. The STR type is mainly for compat-
ibility with previous versions of TekTMS. With the WAVE type you can also
capture XY or Envelope data from an instrument and put it into the WAVE
variable.

Unlike other controls, the position specified for the WAVEFORMDISPLAY
graphic is relative to the upper left hand corner of the front panel, since the
graphic is a separate window rather than part of the front panel.

Figure 2-2 is an example of a WAVEFORMDISPLAY graphic.

TekTMS Instrument Front Panel Developer User Manual 2-25

Figure 2-2: Example of a WAVEFORMDISPLAY Graphic

The only available construct for a WAVEFORMDISPLAY control is CONTROL-
TITLE or TITLE.

The following formulas are used to calculate the real value of the point:

w Implicit dimension: value[n] = scale * n + offset where n goes from 0 to
points- 1 .

w Explicit dimension: value[n] = scale * data[n] + offset where data[n] is
nth data point on that dimension.

WAVEFORMTOVAR Function -The following paragraphs describe how
to use the WAVEFORMTOVAR function in IPG.

The WAVEFORMTOVAR function converts raw digitized waveform data into
a waveform variable.

WAVEFORMTOVAR takes a number of parameters that determine the ac-
tions taken by the routine. The SCRIPT invocation is shown in the following
example:

WAVEFORMTOVAR (INFILE,INFORMAT,WAVEORDER,INTYPE,
XSCALE,XOFFSET,YSCALE,YOFFSET,POINTS,BITS,BYTES,
BYTEORDER,READOFFSET,BYTEFORMAT,XLABEL,YLABEL);

The Parameters are defined as follows:

w INFILE - A string containing the name of the input raw digitized
waveform data.

Instrument Script Language Descriptions

INFORMAT -An integer which defines the input format. The possible
formats are:

o ASCII format

1 Binary Signed format.

2 Binary unsigned format.

WAVEORDER -An integer indicating the order that data is stored in the
input file -this is used only for xy and env inTypes.

o by Tuple (the data is organized so that the data points are listed
together i.e. ~ 1 ~ 1 x 2 ~ 2)

1 by Dimension (the data for the first dimension is given then the next)

INTYPE -An integer which defines the type of waveform input. The
possible formats are:

0 yt (normal waveform - explicit data for only one dimension)

1 xy (explicit data for both dimensions)

2 env (two explicit dimensions with the same implicit dimension -
max value first)

3 env (two explicit dimensions with the same implicit dimension - min
value first)

XSCALE - A floating point number giving the X scale factor used to
convert the raw data into usable information.

XOFFSET - A floating point number giving the X offset to add to the raw
data.

YSCALE - A floating point number giving the Y scale factor used to
convert the raw data into usable information.

Y~FPSET -A floating point number giving the Y offset to add to the raw
data.

POINTS -An integer number giving the number of data points in one
dimension.

BITS -An integer giving the number of bits of data per data point. This
is typically the resolution of the instrument (i.e. 8 for an 8 bit digitizer, 10
for a 10 bit digitizer, 16 for Tektronix 1 1400 Series digitizers).

BYTES - An integer giving the number of bytes per data point in the
input data. The possible values are:

1 one byte per data point.

2 two bytes per data point.

4 four bytes per data point. Either integer or floating point format.

8 eight bytes per data point. Floating point format only.

TekTMS Instrument Front Panel Developer User Manual 2-27

BYTEORDER - An integer that specifies the order of the bytes in the
data point when the input format is binary. This field is used not used
when there is only one data byte per point. The possible values are:

0 Least Significant Byte first. (Swapped bytes).

1 Least Significant Byte last.

w READOFFSET - An integer giving the number of bytes to skip at the
beginning of the input before attempting to read the waveform data
points. This allows you to skip header information which as 'CURVE
%nn' as is common with Tektronix digitizers.

w BYTEFORMAT - an integer which specifies the format of the input data if
the input format is binary. The possible values are:

4 integer format.

8 floating point.

XLABEL - A string containing the label for the X axis.

YLABEL - A string containing the label for the Y axis.

The following WAVEFORMDISPLAY control script is from a Tektronix TDS540
DSO script:

CONTROLGROUP

REM THIS CONTROL IS OUTPUT ONLY, SO IT ONLY HAS A
REM MEASUREMENT BLOCK.

CONTROL WFMD1SPL:WAVE WAVEFORMDISPLAY @ 2.43, 2.00
CONTROLTITLE "TDS WAVEFORM";

END

MEASUREMENT

REM DEFINE ALL OF THE TEMPORARY VARIABLES USED BY THE
REM WAVEFORMTOVAR FUNCTION.

TEMPVAR RAWFILE:STR,INMODE:INT,INTYPE:INT,XSCALE:FLOAT,
XOFF:FLOAT,YSCALE:FLOAT,YOFF:FLOAT,YZERO:FLOAT,
NUMPTS:INT,BITS:INT,BYTES:INT,BORDER:INT,ORDER:INT,
READOFF:INT,BFORMAT:INT,TRIGPTS:INT,XLABEL:STR,
YLABEL:STR;

REM SET THE INPUT FILE NAME. DATA IS READ FROM THE
REM TDS540 INTO A DATA FILE AND THE
REM RESULT OF THE WAVEFORMTOVAR FUNCTION
REM IS A WAVEFORM VARIABLE.
REM GIVE THE RAW DATA FILE ANY LEGAL NAME THAT DOES
REM NOT CONFLICT WITH NAMES TO BE USED IN TEKTMS.
REM THE VARIABLE WFMDISPS IS A CONTROL VARIABLE AND
REM CONTAINS THE STRING GIVING THE INPUT SOURCE.
REM THIS HAS BEEN SET BY A SETTING STEP OR
REM FRONT PANEL UPDATE.

2-28 Instrument Script Language Descriptions

RAWFILE = "-TDS.WAVU;

REM SETUP THE TDS AND QUERY THE INSTRUMENT FOR THE DATA
REM REQUIRED TO CREATE THE WAVEFORM.

CONT->"DATA:SOURCE ",WFMDISPS,";";
CONT->"DATA:ENCDG ASCII;";
CONT->"WFMPRE:", WFMDISPS, ":XUNIT?;";
INST->"\"",XLABEL,"\"";
CONT->"WFMPRE:", WFMDISPS, ":XINCR?;";
INST->XSCALE;
CONT->"WFMPRE:", WFMDISPS, ":YUNIT?;";
INST->"\"",YLABEL,"\"";
CONT->"WFMPRE:", WFMDISPS, ":YMULT?;";
INST->YSCALE;
CONT->"WFMPRE:", WFMDISPS, ":YZERO?;";
INST->YZERO;
CONT->"WFMPRE:", WFMDISPS, ":YOFF?;";
INST->YOFF;
CONT->"WFMPRE:", WFMDISPS, ":NR-PT?;";
INST->NUMPTS;
CONT->"WFMPRE:", WFMDISPS, ":PT-OFF?;";
INST->TRIGPTS;

REM INPUT FORMAT IS ASCI1,INTYPE IS YT, NUMBER OF BITS
REM IS 8. BORDER AND BFORMAT CAN HAVE ANY VALUE.
INMODE = 0;
INTYPE = 0;
ORDER = 0;
BITS = 8;
BYTES = 1;
BORDER = 1;
BFORMAT = 4;

REM ASCII DATA STARTS AT THE BEGINNING OF THE FILE.
READOFF = 0:

REM CALCULATE THE OFFSETS BASED ON DATA FROM THE TDS.
XOFF=(XSCALE*TRIGPTS) *-I;
YOFF=YZERO-(YSCALE"Y0FF);

REM QUERY FOR THE WAVEFORM DATA AND WRITE IT TO A FILE.
CONT->"CURVE?;";
INST->RAWFILE:%F;

REM ASSIGN THE RESULT OF THE WAVEFORMTOVAR FUNCTION TO
REM THE CONTROL VARIABLE.

WFMDISPL = WAVEFORMTOVAR(RAWFILE,INMODE,ORDER,INTYPE,
XSCALE,XOFF,YSCALE,YOFF,NUMPTS,BITS,BYTES,BORDER,
READOFF,BFORMAT,XLABEL,YLABEL) ;

END
END

TekTMS Instrument Front Panel Developer User Manual 2-29

Note that the variable type is WAVE and that no ADlF file is written at this
time. The Control can not be defined as a STR. To get an ADlF file you need
to do a Variable to file transfer step using the waveform variable assigned
when a meaurement is done using this control.

WAVEFORMTOADIF FUNCTION - The following paragraphs describe
how to use the WAVEFORMTOADIF function in IPG.

The WAVEFORMTOADIF function converts raw digitized waveform data into
ADlF format data. It takes an input waveform file and outputs an ADlF format
data file containing the waveform. This release supports ADlF Version 1.00.

WAVEFORMTOADIF takes a number of parameters which determine the
actions taken by the routine. The script invocation is shown in the following
example:

WAVEFORMTOADIF (INFILE,INFORMAT,OUTFILE,OUTFORMAT,
XSCALE,XOFFSET,YSCALE,YOFFSET,POINTS,BITS,BYTES,
BYTEORDER,READOFFSET,BYTEFORMAT,XLABEL,YLABEL);

The parameters are defined as follows:

H INFILE - A string containing the name of the input raw digitized
waveform data.

H INFORMAT - An integer which defines the input format. The possible
formats are:

0 ASCll format.

1 Binary signed format.

2 Binary unsigned format.

H OUTFILE - A string containing the name of the output ADlF file.

H OUTFORMAT -An integer which defines the output format. The possible
formats are:

0 ASCll format.

1 Binary format. All ADlF binary formats are signed.

The parameter OUTFORMAT is not used in Version 2.5. All ADlF files are
written in binary format (32 bit floating point). This parameter is included
for compatibility with previous versions of TekTMS.

H XSCALE - A floating point number giving the X scale factor used to
convert the raw data into usable information.

H XOFFSET - A floating point number giving the X offset to add to the raw
data.

YSCALE - A floating point number giving the Y scale factor used to
convert the raw data into usable information.

H YOFFSET - A floating point number giving the Y offset to add to the raw
data.

2-30 Instrument Script Language Descriptions

8 POINTS -An integer giving the number of data points in the raw input
data file.

8 BITS -An integer giving the number of bits of data per data point. This
is typically the resolution of the instrument (i.e., 8 for an 8 bit digitizer, 10
for a 10 bit digitizer, 1 6 for the Tektronix 11400 Series digitizers).

BYTES -An integer giving the number of bytes per data point in the
input data. The possible values are:

1 one byte per data point.

2 two bytes per data point.

4 four bytes per data point. Either integer or floating point format.

8 eight bytes per data point. Floating point format only.

8 BYTEORDER - An integer that that specifies the order of the bytes in the
data point when the input format is binary. The possible values are:

0 Least Significant Byte first. (Swapped bytes.)

1 Least Significant Byte last.

8 READOFFSET - An integer giving the number of bytes to skip at the
beginning of the input file before attempting to read waveform data
points. This allows you to skip header information such as "CURVE BNN"
as is common with Tektronix digitizers.

8 BYTEFORMAT -An integer that specifies the format of the input data if
the input format is binary. The possible values are:

4 integer format.

8 floating point.

8 XLABEL - A string containing the label for the X axis.

8 YLABEL - A string containing the label for the Y axis.

The following WAVEFORMDISPLAY control script is from the Tektronix 2430A
DSO script:

CONTROLGROUP

REM THIS CONTROL IS OUTPUT ONLY, SO IT ONLY HAS A
REM MEASUREMENT BLOCK.

CONTROL WFM:STR WAVEFORMDISPLAY @2.5,2.0
CONTROLTITLE "2400 WAVEFORM";
END

MEASUREMENT

REM DEFINE ALL OF THE TEMPORARY VARIABLES USED BY THE
REM WAVEFORMTOADIF FUNCTION.

TekTMS Instrument Front Panel Developer User Manual 2-3 1

TEMPVAR RAWFILE:STR,ADIFFILE:DTR,INMODE:INT,
OUTMODE:INT,XSCALE:FLOAT,XOFF:FLOAT,
YSCALE:FLOAT,YOFF:FLOAT,NUMPTS:INT,BITS:INT,
BYTES:INT,BORDER:INT,READOFF:INT,BFORMAT:INT,
XLABEL:STR,YLABEL:STR;

REM SET THE INPUT AND OUTPUT FILE NAMES. DATA IS READ
REM FROM THE 2430A INTO A DATA FILE AND THE RESULT OF
REM THE WAVEFORMTOADIF FUNCTION IS A DATA FILE. GIVE
REM THE RAW DATA AN EXTENSION OF .WAV AND THE ADIF
REM FILE AN EXTENSION OF .WFD.

RAWFILE = "2400.WAV";
ADIFFILE = "2400.WFD":

REM SET THE INPUT DATA FORMAT FOR THE RAW WAVEFORM
REM DATA AS BINARY SIGNED AND THE OUTPUT AS BINARY

INMODE = 1;
OUTMODE = 1;

REM SET THE INPUT BYTE SIZE, BYTE NUMBER, ORDER, AND
REM FORMAT.

BITS = 8;
BYTES = 1;
BORDER = 1;
BFORMAT = 4;

REM SET THE READ OFFSET TO 3 BYTES (SKIP THE %NN AT
REM THE BEGINNING OF THE DATA FILE).

READOFF = 3:

REM SET THE DATA RETURN FORMAT TO JUST NUMBERS AND
REM THEN QUERY THE INSTRUMENT FOR THE DATA REQUIRED TO
REM CREATE THE ADIF FORMAT DATA.

CONT -> "PATH 0FF;LONG OFF;";
CONT -> 'DATA ENC:RIB;WFMPRE? XIN,XUN,PT.O,YUN,YMU,YOF,

NR. P";

REM READ THE SCALE, OFFSET, NUMBER OF DATA POINTS, AND
REM AXIS LABELS.

REM SCALE THE OFFSET CORRECTLY

2-32 Instrument Script Language Descriptions

XOFF = XOFF*XSCALE*-1;
YOFF = YSCALE*YOFF*-1:

REM QUERY FOR THE WAVEFORM DATA AND WRITE IT TO A
REM FILE.

CONT -> "CURVE?";
INST -> RAWFILE:%F;

REM TURN THE RAW INSTRUMENT DATA INTO AN ADIF FILE FOR
REM USE BY THE WAVEFORMDISPLAY AND PULSE PARAMETER
REM FUNCTIONS.

WAVEFORMTOADIF (RAWFILE,INMODE,ADIFFILE,OUTMODE,XSCALE,
XOFF,YSCALE,YOFF,NUMPTS,BITS,BYTES,
BORDER,READOFF,BFORMAT,XLABEL,YLABEL);

REM ASSIGN THE WAVEFORMDISPLAY CONTROL VARIABLE THE
REM NAME OF THE FILE CONTAINING THE JUST CAPTURED AND
REM CONVERTED WAVEFORM.

WFM = ADIFFILE;

END
END

Notice that the variable type is STR and that the variable is assigned the
name of the ADIF file. The type of IPG variable associated with this control
would be WAVEFORM, but in the script, it is treated as a string.

Control Type Summary

Table 2-3 is a quick reference guide showing the available control type and
parameters:

Table 2-3: Control Type Summary

CHECK EDIT LIST PUSH RADIO TEXT WAVE
BOX BOX BOX BUTTON BUTTON BOX FORM

--

CONTROLTITLE X X X X

DEFAULTPOS X

NUMCOLS X X X

NUMROWS

ONEOFGROUP X

SCROLLHORZ X X

SCROLLVERT X X X

TekTMS Instrument Front Panel Developer User Manual 2-33

Table 2-3: Control Type Summary (Cont.)

CHECK EDIT LIST PUSH RADIO TEXT WAVE
BOX BOX BOX BUTTON BUTTON BOX FORM

STATE X X

STRING X X X X X X

2-34 Instrument Script Language Descriptions

SETTING and SETTING blocks and MEASUREMENT blocks are alike. Both consist of

MEASUREMENT dialogs and statements. The IPG procedures can only send data to a SET-

Blocks TlNG block and can only receive data from a MEASUREMENT block. These
blocks must be located at the end of their CONTROLGROUP blocks, and
the SETTING block must precede a MEASUREMENT block

A SETTING or MEASUREMENT block can contain actions that are either
dialogs or statements. The following is a list of dialogs and statements:

Dialogs

CONT - > Controller Dialog
INST - > lnstrument Dialog

Statements

Assignment General purpose expression evaluation and
variable assignment

IF THEN ENDlF IF (condition) THEN (actions) ENDIF

IF THEN ELSE ENDlF IF (condition) THEN (actions) ELSE (actions)
ENDIF

WHILE DO END WHILE (condition) DO (actions) END

GPlB commands Low level GPlB bus commands

Variable declarations Definitions of variables local to a SETTING or
MEASUREMENT block

Function call Calls to various ISL functions

More information on dialogs and statements is provided in the following
sections of this manual.

The dialogs and statements in a SETTING or MEASUREMENT block are
executed in order, starting at the beginning of the block. In some applica-
tions, the sequential execution of all dialogs and statements may not be
desired. An IF-THEN-ELSE statement can be used within a SETTING or
MEASUREMENT block to control statement execution.

TekTMS Instrument Front Panel Developer User Manual 2-35

IF Conditional The syntax for an IF conditional structure is as follows:

Structure IF condition THEN dialogs OR statements;
ELSE dialogs OR statements;
ENDIF

IF condition THEN dialogs OR statements;
ENDIF

The IF Statement allows decision processing. When the condition result in
an IF statement is TRUE, the dialogs or statements in the initial IF statement
are executed. When the condition result is FALSE, the dialogs or statements
in the ELSE portion of the construct are executed, or, in the case of no
ELSE, the dialogs or statements in the IF construct are bypassed without
execution. Therefore, the IF Conditional Structure would be used to choose
between alternative actions, based on the result of the condition.

Dialogs and statements are the heart of a script. SETTING and MEASURE-
MENT blocks use the dialogs and statements to communicate with and
execute commands for instrument operation from the controller. Specific
instrument address information comes from the Instrument Select informa-
tion entered when an ISD file is selected. Communications parameters come
from the BUSNOTE section of the script.

Condition

The syntax for condition could be any one of the following:

(EXPRESSION)
(EXPRESSION RELATIONAL OPERATOR EXPRESSION)
(STRING VARIABLE RELATIONAL OPERATOR STRING VARIABLE)

NOTE

Expressions used in these conditions must evaluate to a zero
(FALSE) or a nonzero (TRUE) value.

Where EXPRESSION is a mathematical expression and RELATIONAL OPER-
ATOR is a relational operator (= =, >, <, > =, < =, or < >). A STRING
VARIABLE is either a string constant or a variable name of type STR.

A condition is TRUE if it evaluates to a non-zero value, and FALSE if it evalu-
ates to zero. A comparison of a string to a another string evaluates to TRUE
if they are identical and FALSE if they are not. The comparison is case
sensitive.

2-36 Instrument Script Language Descriptions

Dialogs

Dialogs are used for controller and instrument instructions. Each dialog type
is designed to carry out a different kind of task.

There are two dialog types: Controller Dialog and lnstrument Dialog. For
each dialog type there is a unique keyword.

CONT - > Controller dialog

INST - > lnstrument dialog

A dialog is limited to using CONT and INST.

Controller Dialog - prepares and sends data, or the contents of a file, to
the instrument. The string to be sent is built by evaluating each
OUTPUT-EXPRESSION and appending the results to form the string. This
string is then sent to the instrument. The text for a controller dialog consists
of one or more OUTPUT~EXPRESSIONS. The format for the controller dialog
is as follows:

CONT -> OUTPUT-EXPRESSION [,OUTPUT-EXPRESSION [, I] ;

Where OUTPUT-EXPRESSION contains:

w STRING constants - One or more ASCII characters enclosed in double
quotes. "ABC", "VOLTS", and "ID? ,, are examples of string constants.
The double quotes are required around the string. A string without
quotes is interpreted as a variable reference.

W Variables - FREQUENCYA, CHlVOLTS, and DMMVALUE are examples of
variables.

w Variable:%format - CHIVOLTS : % 6 . 3 ~ and DWALUE: %8.2E are
examples of variables with format specifiers.

w Expressions - Any valid mathematical calculation, string concatena-
tion, or function call. 2 *VOLTS, VOLTSDIV/ 4.3, and VALUEQUERY &

v ~ ~ ~ ~ ~ u are examples of expressions.

w The commas separating the OUTPUT-EXPRES s IONS and the ending
semicolon are required.

w Function calls - You can use the SKIP (N) or the CHR (N) functions in
a controller dialog.

Following are some examples of controller dialogs:

CONT -> "VOLTS?" ;

This example will send the string "VOLTS?" to the specified instrument.

CONT -> "CHI VOLTS: ",VOLTS:%8.2G,";",;

In this example, if the variable VOLTS contained the number 12.34, the
string "CHI VOLTS : 12 . 34 ; " will be sent to the specified instrument.
Notice that there are leading spaces before the number 12.34. The 8 in the
dialog is the number of spaces in the width of the format, and the 2 is the

TekTMS Instrument Front Panel Developer User Manual 2-37

number of digits after the decimal point. The format type G tells the controller
dialog to output a floating point number. The : % characters indicate that the
following character is a format descriptor.

If the variable VOLTS contained the number 12 .3 4 5 6, the string sent would
be "CHI VOLTS : 12 . 3 5 ; ". Notice the leading spaces and the rounding of
the number to fit the specified format.

More information on format types and format modifiers is given later in this
section.

The following is an example of a function call in a controller dialog:

CONT -> "MODE BINARY ",CHR(43),CHR(45);

The controller dialog in this example will send the string "MODE BINARY
+ - n to the specified instrument.

lnstrument Dialog - reads data from the instrument. The format for an
instrument dialog is as follows:

INST -> INPUT-EXPRESSION [INPUT-EXPRESSION [,....]I;

Where an INPUT-EXPRESSION contains:

STRING constants - One or more ASCII characters enclosed in double
quotes. "ABC " , "VOLTS ", and "ID? are examples of string constants.
The double quotes are required around the string. A string without
quotes is interpreted as a variable reference. String constants in an
instrument dialog are used to indicate exact string matches in the re-
sponse from the instrument. When a string constant is found in an
instrument dialog, the string read from the instrument is scanned for a
match with the constant. If a match is found, the rest of the dialog takes
data starting with the character after the matched string. If a match is
not found, an error is reported.

Variables - FREQUENCYA, CHIVOLTS, and DMMVALUE are examples of
variables.

Variable:%format - CHIVOLTS : % 6.3G and DMMVALUE : % 8 . 2 ~ are
examples of variables with format specifiers.

Expressions - String concatenation. Such as VALUEQUERY &

"VOLTS " is allowed.

Function calls - You can use the SKIP (N) or CHR (N) functions in an
instrument dialog.

The commas separating the INPUT~EXPRESSIONS and the ending semico-
lon are required.

Following are some examples of instrument dialogs. In each example, the
instrument string read is:

Where VOLTS and AMPS are FLOATS and TERM is an INT.

2-38 Instrument Script Language Descriptions

In this example, the instrument dialog scans the string read from the instru-
ment from the string "VOLTS : ", then reads the following characters as a
floating point number. The conversion of characters from a string into a
number will stop when the " ; character after the number 12.345 is read.
The variable VOLTS will contain the value 12 .345 after the instrument dialog
is executed.

In this example, the instrument dialog will scan the string read from the
instrument for the string "AMPS : ", then read the following characters as a
floating point number with a width of 6 characters and no more than 3
characters after the decimal point. The variable AMPS will contain the value
0 .234 after the instrument dialog is executed. The next character that would
be processed is the ; , because the width specifies a format of 6 charac-
ters. The character 5 is skipped.

INST -> "VOLTS : " , VOLTS, "AMPS : " , AMPS, ' ' T E R M ;

In this example, the instrument dialog will scan the string read from the
instrument for three different strings and extract the VOLTS, AMPS, and TERM
values from the string.

The following is an example of a function call in an instrument dialog:

In this example, the instrument dialog will read a string from the instrument,
skipping the first 2 0 characters, then place the remainder of the data into
the variable DMMVALUE using the default format for the data type declared
for DMMVALUE.

You can use the SKlP characters function in an lnstrument dialog to skip
over unneeded characters. For example, if an instrument returns an ASCII
binary representation of switch closures, then you could skip over unwanted
characters to get to the one character that indicated whether or not the
switch was open or closed. If an instrument with 16 switches returned a
string of the format W0RDF:B #B0000000000000001;, to indicate that
Switch 1 was closed and all other switches were open, you could read just
the Switch 1 setting with the MEASUREMENT block using the SKlP charac-
ters function in the following example:

CONTROLGROUP
CONTROL SWITCH1:INT CHECKBOX @5,3
STRING "1";
END
SETTING
CONT -> "CLOSE:F1.Aln
END
MEASUREMENT
CONT -> "W0RDF:BINARY; WORD?";

REM SKIP OVER THE 'W0RDF:B #B' HEADER AND THE FIRST

TekTMS Instrument Front Panel Developer User Manual 2-39

REM 15 SWITCH SETTINGS TO GET TO THE DIGIT NEEDED
REM READ IT AS A DECIMAL NUMBER SO THAT 1
REM (CLOSED/TRUE) OR 0 (OPEN/FALSE) IS RETURNED.

INST -> SKIP (25),SWITCHl;%lD;
END
END

Statements

There are five types of statements you can use in programming SETTING
and MEASUREMENT blocks. These types are:

Temporary variable declarations
GPlB commands
Assignment statements
IF statements
WHILE statements

Temporary Variables - are the variables specified in the TEMPVAR
statement. These variables can be used to store values during the execution
of a SETTING or MEASUREMENT block. Variables declared with the TEMP-
VAR statement are local to the SETTING or MEASUREMENT block where
they are declared and can not be accessed by another SETTING or MEA-
SUREMENT block. This contrasts with control variables, which are global in
a script. Temporary variables are used where it is desirable to temporarily
store data without declaring a separate CONTROL block.

TEMPVAR is the temporary variable statement keyword, specifying a list of
variables that are made available in the SETTING or MEASUREMENT block.
The syntax of the TEMPVAR statement is:

TEMPVAR VARNAME:VARTYPE (,VARNAME:VARTYPE) ;

In the previous syntax definition, the statement type is TEMPVAR and VAR-
NAME is the variable name. VARNAME is limited to 15 characters. VARNAME
is followed by a colon (:), followed by VARTYPE, which is the variable type
(i.e., INT, FLOAT, or STR), and must be specified for each VARNAME and
separated from VARNAME by a comma. Following is an example:

TEMPVAR VOLTS:INT, M0DE:STR;

In this example, the TEMPVAR statement declares variables named VOLTS,
of the type <F1 >INT, <F1> and MODE, of the type STR.

GPlB Commands - are meaningful only when the script is configured for
an IEEE 488 compatible bus. These commands can be included in scripts
that use a communications bus other than GPIB, but no action will be taken
when they are executed. A GPlB command in a script with a VXIINTERNAL,
MXI, CDSBUS, or RS232 BUSNOTE is treated as a NOOP (no operation)
statement.

2-40 Instrument Script Language Descriptions

The syntax for a GPlB command is:

INTERFACEMSG [PARAMI ;

The statement TEXT for a GPlB command consists of one or more of the
INTERFACEMSG messages in Table 2-4. A parameter may follow the INTER-
FACEMSG, if required. The INTERFACEMSG messages referred to here
have been specified in IEEE 488.

Table 2-4: GPlB Commands

Command Parameter Description
(InterfaceMsg) (param)

ATN n A single byte of the value n sent to the
bus with attention asserted.

ATN "STRING" A string constant is sent to the bus with
attention asserted.

DCL Device CLear command sent out on
the bus.

GTL Go To Local is sent to the device.

GET Group Execute Trigger.

I FC InterFace Clear line is pulsed.

LLO Local Lockout command is sent over
the bus.

REN TRUE Remote ENable is asserted if TRUE.

REN FALSE Remote ENable is dropped if FALSE.

SDC Selective Device Clear command is
sent to the device.

TIM num The TIMEOUT value is redefined to be
num (in milliseconds). This overrides
the value specified in the Note section
or the one specified by an earlier TIM
command for the duration of the block
containing the TIM command.

UNL UNListen command is sent out on the
bus.

UNT UNTalk command is sent out on the
bus.

TekTMS Instrument Front Panel Developer User Manual 2-41

Following are some GPlB command examples:

REN TRUE;
ATN 10 ; (The number here represents an ASCII character.)
SDC ;
IFC ;
TIM 10;

You can perform a serial poll with the ISL special function SERIALPOLL.
SERIALPOLL allows the user to create a GPlB instrument front panel control
to poll and display instrument status. The format is:

X = SERIALPOLLO;

Where x can be any integer variable.

Following is an example using SERIALPOLL to create a TEXTBOX to display
status whenever an Update! menu item is selected in an IPG test proce-
dure, or the automatic Refresh Rate mode is selected:

REM DISPLAY INSTRUMENT STATUS ON FRONT PANEL UPDATE.

CONTROLGROUP
CONTROL STATUS:INT TEXTBOX @ 2 , 3
TITLE "STATUS";
END
MEASUREMENT
STATUS = SERIALPOLLO;
END
END

Assignment Statement - allows evaluation of any expression. An ex-
pression is created from one or more of the elements that have a value
combined to represent a new combined value. Another way of explaining an
expression is to describe it as one side of an algebraic formula. Several
things to note about expressions are:

H Expressions can be very simple (one element) or extremely complicated.

H Usually, all values are separated from each other by an operator.

Using meaningful names makes the expression much easier to under-
stand.

Values can be of different types, and the proper combination of these
types is necessary for correct results.

The Assignment Statement has the following syntax:

VAR = expression;

Table 2-5 lists the available operators for expressions.

2-42 Instrument Script Language Descriptions

Table 2-5: Expression Operators

Operator Description TY Pe

+ plus FLOATand INT, unary

- minus FLOAT and INT, unary
-

multiply FLOAT and INT

/ divide FLOAT and INT

>= greater than or INT, FLOAT, or STR
equal

<= less than or equal INT, FLOAT, or STR

> greater than INT, FLOAT, or STR

< less than INT, FLOAT, or STR

-- -- equal INT, FLOAT, or STR
- ~

not equal INT, FLOAT, or STR

- - assignment INT, FLOAT, or STR

and logical AND I NT

or logical OR INT

not logical NOT I NT

band bitwise AND INT (assumed to be unsigned)

BOR bitwise OR INT (assumed to be unsigned)

BXOR bitwise EXCLUSIVE INT (assumed to be unsigned)
OR

BNOT bitwise NOT INT (assumed to be unsigned)

& STRING concatena- STR
tion

Following are some examples of Assignment statements:

A = A+B ; where A and B are numeric values

B = 3 4 /VOLTS ; where B and VOLTS are numeric values

COMMAND = "CMD" & COMMAND TYPE;^^^^^ COMMAND and
COMMANDTYPE are string variables

POLLRESPONSE = SERIALPOLLO; where POLLRESPONSE isan
integer variable

TekTMS Instrument Front Panel Developer User Manual 2-43

LOGICALVALUE = (NOT(A AND B)) OR c;where LOGICALVALUE,
A, B, and c, are integer variables

BITVALUE = (BNOT(A AND B)) OR C ; whereBITvALuE, A, B,
and c are integer variables

Parentheses can be used to define the order of evaluation of an expression.
The default order of precedence for evaluation is as follows (highest prece-
dence to lowest precedence):

not, BNOT logical negation and bitwise negation

multiplication and division

+. - addition and subtraction

& string concatenation

<=, >=, >, < less than or equal, greater than or equal, less than,
greater than

-- -- , <> equal and not equal

band bitwise AND

BOR, BXOR bitwise OR and bitwise EXCLUSIVE OR

and logical AND

or logical OR

- - assignment

IF Statement - allows decision processing. The syntax for an IF state-
ment is as follows:

IF expression THEN dialogs OR statements;
ELSE dialogs OR statements;
ENDIF

IF expression THEN dialogs OR statements;
ENDIF

The expression in an IF expression THEN clause must evaluate to a
zero (FALSE) or a non-zero (TRUE) number. By definition, a comparison of
STRINGS, less than, greater than, less than or equal, greater than or equal,
equal, not equal, bitwise, and logical operators result in a zero or non-zero
number. When the expression in an IF statement results in a TRUE condi-
tion, the dialogs OR statements in the initial IF statement are
executed. When the expression results in a FALSE condition, the dia-
logs OR statements in the ELSE portion of the construct are executed,
or, in the case of no ELSE, the dialogs OR statements of the IF
construct are bypassed without execution. Therefore, an IF statement
would be used to choose between alternative actions, based on the result of
the expression.

2-44 Instrument Script Language Descriptions

You can nest IF statements.

WHILE Statement - allows repeated dialog evaluation. The syntax for a
WHILE statement is as follows:

WHILE expression DO dialogs OR statements;
END

The expression in a WHILE expression DO clause must evaluate to a
zero (FALSE) or a non-zero (TRUE) number. By definition, a comparison of
strings, less than, greater than, less than or equal, greater than or equal,
equal, not equal, bitwise, and logical operators result in a zero or non-zero
number. The dialogs OR statements in the WHILE statement will contin-
ue to execute until the expression results in a FALSE condition.

You can nest WHILE statements.

- -

Functions
CHR

The number to ASCII character conversion function is used in a controller
dialog to send binary character strings to an instrument. The syntax for the
function is CHR (n) , where n is a number from 0 - 255. You can use this
function to send binary or format characters to an instrument. For example,
you may have an instrument that needs a binary pattern of 0000001 0 to set
it to a particular state. You could use the following SETTING block to accom-
plish this:

CONTROLGROUP
CONTROL CH1RESET:INT PUSHBUTTON @24,12
STRING "CHI RESET";
END
SETTING
CONT -> CHR(2),CHR(2);
END
END

Another function that is useful in a SETTING or MEASUREMENT block is the
TIMEDELAY function. It can be used anytime you need to wait for a process
to complete, such as closing a relay. The syntax for the TIMEDELAY function
is TIMEDELAY (n);, where n is in milliseconds. The following is an example
of the TIMEDELAY function.

SETTING
CONT -> "CLOSE:F1.A1";
TIMEDELAY(100);

END

TekTMS Instrument Front Panel Developer User Manual 2-45

Display

A third useful function is the display of a message to the operator. The
syntax for this function is DISPLAY(stringdata), where stringdata is a string
constant, string variable, or string expression. This function lets you display
a message to the operator on the screen in a dialog box during script execu-
tion. It can be used to say that a value is out of range, or that an instrument
function requested did not execute. For example, if the voltage output range
specified is out of bounds, you could send a message to the operator using
the following example script:

CONTROLGROUP
CONTROL V0LTS:FLOAT EDITBOX @20,10
END
SETTING
IF (VOLTS > 24 OR VOLTS < 0.1) THEN
DISPLAY("THE VOLTAGE MUST BE SET BETWEEN 24 AND 0.1

VOLTS") ;
ELSE
CONT -> "VOLTS: ",VOLTS;
ENDIF

END
MEASUREMENT
CONT -> "VOLTS?";
INST -> "VOLTS: ",VOLTS;
END
END

FASTDCWRITE

If you have instruments that support the VXI Fast Data Channel protocol,
you can use the FASTDCWRlTE function in a SETTING block to send the
contents of a file to an instrument. The syntax for the FASTDCWRITE func-
tion is as follows:

Where: FILENAME is the name of the file to read from (a string); FDCBA-
SEADDR is the base address of the instrument FDC memory (an integer);
FDCSIZE is the size of the FDC memory (an integer); and CMDSTR is the
Word Serial command to send to the instrument to start an FDC transfer (a
string).

The following is a simple Script example using the fast data channel func-
tions:

SCRIPT "FDCTEST"

VXIINTERNAL
END

VIEW
CONTROLGROUP

2-46 Instrument Script Language Descriptions

CONTROL FDCREAD:STR EDITBOX @5,2
CONTROLTITLE "FDCREAD:";
NUMCOLS 14;
END

SETTING

REM QUERY THE INSTRUMENT FOR THE FDC PROTOCOL
REM PARAMETERS.
TEMPWAR BASEADDR:INT,SIZE:INT;
CONT -> "HEADER OFF";
CONT -> "FDCBASE?";
INST -> "#Hm,BASEADDR:%H;
CONT -> "FDCSIZE?";
INST -> SIZE;
CONT -> "HEADER ON";

REM READ FROM THE INSTRUMENT AND PLACE THE DATA INTO
REM A FILE.
FASTDCREAD(FDCREAD,BASEADDR,SIZE,"FDCLOAD?");
END
END

CONTROLGROUP
CONTROL FDCWR1TE:STR EDITBOX @5,6
STRING "DEF.EDOU ;
CONTROLTITLE "FDCWRITE:";
NUMCOLS 14;
END

SETTING
REM QUERY THE INSTRUMENT FOR THE FDC PROTOCOL
REM PARAMETERS.
TEMPVAR BASEADDR:INT,SIZE:INT;
CONT -> 'NEW";
CONT -> "FDCBASE?";
INST -> '#HU,BASEADDR:%H;
CONT -> "FDCSIZE?";
INST -> SIZE;
CONT -> "HEADER ON";
REM WRITE THE DATA FROM THE FILE TO THE INSTRUMENT.
FASTDCWRITE(FDCWRITE,BASEADDR,SIZE,"FDCLOAD");

END
END
END

Notice that FASTDCWRITE uses a SETTING block to transfer data. You need
the name of the file to read data from, and the only way to get data from the
front panel or test program to the instrument is by using a SETTING block.

TekTMS Instrument Front Panel Developer User Manual 2-47

FASTDCREAD

If you have instruments that support the VXI Fast Data Channel protocol,
you can use the FASTDCREAD function in a SETTING block to read data
from an instrument and place it into a file. The syntax for the FASTDCREAD
function is as follows:

Where FILENAME is the name of the file to read from (a string); FDCBA-
SEADDR is the base address of the instrument FDC memory (an integer);
FDCSIZE is the size of the FDC memory (an integer); and CMDSTR is the
Word Serial command to send to the instrument to start an FDC transfer (a
string).

The following is a Script example using the fast data channel functions:

SCRIPT "FDCTEST"

VXIINTERNAL
END

VIEW
CONTROLGROUP
CONTROL FDCREAD:STR EDITBOX @5,2
CONTROLTITLE "FDCREAD:";
NUMCOLS 14;
END

SETTING

REM QUERY THE INSTRUMENT FOR THE FDC PROTOCOL
REM PARAMETERS.

TEMPVAR BASEADDR:INT,SIZE:INT;
CONT -> "HEADER OFF";
CONT -> "FDCBASE?";
INST -> "#HU,BASEADDR:%H;
CONT -> "FDCSIZE?";
INST -> SIZE;
CONT -> "HEADER ON";

REM READ FROM THE INSTRUMENT AND PLACE THE DATA INTO
REM A FILE.

FASTDCREAD(FDCREAD,BASEADDR,SIZE,"FDCLOAD?") ;

END
END

CONTROLGROUP
CONTROL FDCWR1TE:STR EDITBOX @5,6
STRING "DEF.EDOU ;
CONTROLTITLE "FDCWRITE:";

2-48 Instrument Script Language Descriptions

NUMCOLS 14;
END

SETTING

REM QUERY THE INSTRUMENT FOR THE FDC PROTOCOL
REM PARAMETERS.

TEMPVAR BASEADDR:INT,SIZE:INT;
CONT -> "NEW";
CONT -> "FDCBASE?";
INST -> "#HU,BASEADDR:%H;
CONT -> "FDCSIZE?";
INST -> SIZE;
CONT -> "HEADER ON";

REM WRITE THE DATA FROM THE FILE TO THE INSTRUMENT.

FASTDCWRITE(FDCWRITE,BASEADDR,SIZE,"FDCLOADn);
END
END
END

Notice that FASTDCREAD is not in a QUERY bock. You need the name of
the file to write data to, and the only way to get data from the instrument to
the front panel or test program by using a SETTING block.

READLENGTH

The READLENGTH function sets the number of data bytes to read with the
next INST dialog. The default value for the number of data bytes read is -1,
or all bytes sent by an instrument. An instrument that talks without terminat-
ing the data string causes problems with unwanted timeouts. An instrument
that does not stop sending data also causes problems. The READLENGTH
function applies only to the next INST dialog. The INST dialog resets the
READLENGTH value to -1 (read all data) when it is complete. The READ-
LENGTH function does not set the absolute number of data bytes to read. It
only put an upper limit on the number of bytes read. Fewer data bytes may
be read depending on the data being sent from the instrument. The follow-
ing is an example of the READLENGTH function.

SETTING
CONT -> "*IDN?";
READLENGTH(12) ;
INST -> VALUE1;

END

If an instrument has more data ready to send than will be read by the INST
dialog as modified by the READLENGTH function, the status of the extra
data strings will be determined by the instrument. In some cases the data is
discarded and in some cases, th e data will be sent to the next INST dialog.

TekTMS Instrument Front Panel Developer User Manual 2-49

Variable Types There are four variable types available in scripts: integers, floats, STRING
and waveform. The variable name is followed by the variable type (: INT for
integer, : FLOAT for floats, : STR for String and :WAVE for waveform). Vari-
able names must start with an alphabetic character and be no more than 15
characters in length.

lntegers

lntegers require 4 bytes for storage. The range is -23' - 231-1

Floats

Floats require 8 bytes for storage and use the IEEE format. The approximate
range (as specified for Microsoft C) is 2.2E-308 - 1.8E+308.

Strings

A string is any number of bytes, each byte being a character. The number of
bytes in a string is limited to the amount of memory available.

Literal strings (enclosed in " ") are limited to 255 characters. If a literal string
exceeds this limit, an error is reported and parse fails. Strings longer than
255 characters can be built up in script using the ampersand (&) concatena-
tion operator. Several special printing and non-printing characters can be
included in a literal string by using the backslash character (\) followed by
the desired character. These special characters and their string entries are
as follows:

LF (Line Feed \ R

HT (Horiz Tab) \ T

CRLF (Return Line Feed) \n

Carriage returns are ignored in literal strings except when explicit \n ap-
pears.

Waveforms

Waveform variables are a special type of data and can be used only in very
specific situations. You can either assign one waveform variable to another
waveform variable or assign it to the function WAVEFORMTOVAR. Any other
use of the waveform variable causes an error.

2-50 Instrument Script Language Descriptions

Variable Formats In controller and instrument dialogs, you can precisely specify the format for
variables.

Controller Dialog Formats

In a controller dialog, the format can be specified for a string variable.

To specify the format, each variable is followed by a colon, followed by the
format. The format specification begins with a % and ends with a format
character. Between the % and the format character one may specify the
modifiers, width, and precision.

The following are examples of specifying formats:

CONT -> "VOLTS ",VOLTS:%9.5E;
CONT -> "AMPS ",AMPS: % 7 . 3 G ;

The following list shows the format types that are available, what they are
used for, and the default field widths:

%nD integer, the numbers 0 - 9, + and - . n specifies the number
of digits. Default width of 10 if n is not specified.

%n.mG floating point, integers, and numbers with decimal points. n
defines the total field size, including the decimal point, and m
defines the maximum number of characters following the
decimal point. Numbers of greater precision than specified
will be rounded. Default width of 19 if n is not specified.

%n.mE integers, floating point, and exponential numbers. Scientific
notation characters are 0 - 9, + and - , E or e. n defines the
total field size, including the decimal point, m defines the
maximum number of characters following the decimal point.
Numbers of greater precision than specified will be rounded.
Default width of 24 if n is not specified.

binary, the numbers 0 and 1. The number is assumed to be
unsigned and is interpreted as right justified. n specifies the
number of digits. Default width of 32 if n is not specified.

octal, the numbers 0 - 7. n specifies the number of digits.
Default width of 11 if n is not specified.

hexadecimal, the numbers 0 - 9 and the letters A - F. Input
is assumed to be unsigned. n specifies the number of digits.
Default width of 8 if n is not specified.

%nS string. n specifies the number of characters. All characters are
accepted if n is not specified. No default width.

%F file name. No default width.

If the specified format is incompatible with the type of the variable, an error
is reported.

TekTMS Instrument Front Panel Developer User Manual 2-5 1

Binary, Octal, and Hexadecimal formats are used to write ASCII string repre-
sentations of these types of numbers; they do not write binary representa-
tions of these formats.

If n is not specified, the processing is Free Format. Output is based on the
minimum number of bytes required for that format.

If the format is not specified, the type of the variable is taken as the default
format and the format is Free Format.

You can use appropriate width or width precision modifiers with these format
types. The following are examples of specifying field widths and using
precision modifiers with format types:

CONT -> VAR1:%6D;
CONT -> VAR1:%12.6E;

If the format width is specified but is not large enough to accommodate the
number, an error is reported.

If the width is specified and the number of digits for the number is less than
the width, the remaining characters are discarded.

The following is an example of specifying field widths, using a precision
modifier, and using a formatting modifier:

CONT -> "VOLTS ",VOLTS:%+5.2G;

In this example, + is the formatting modifier, 5 is the specified width, 2 is the
precision modifier, and G specifies the format type.

The available formatting modifiers are:

Z Leading zero fill instead of the default space fill.

+ Always output sign.

< Left justify instead of the default right justify.

Following are examples in the use of formatting modifiers (assume the
variable VOLTS contains the value 1 . 1):

CONT -> "VOLTS " , VOLTS : %<5.2G; output STRING "VOLTS 1.10 "

(contains a trailing space)
CONT -> "VOLTS ",VOLTS:%+5.2G; 0utputSTRlNG "VOLTS +1.10"
CONT -> "VOLTS ",VOLTS:%Z5.2G; 0utp~tSTRlNG "VOLTS 01.10"
CONT -> "VOLTS " ,VOLTS : %+Z5.2G; output STRING "VOLTS
+01.10"

Notice that you can combine formatting modifiers.

The file name format is used with a string variable and indicates that the
entire transaction is between a file and an instrument. Using %F in a control-
ler dialog will transfer the contents of a file to an instrument. If you use the
%F format, it must be the only format specified in the dialog, or an error will
be reported.

2-52 Instrument Script Language Descriptions

Following is an example of using the %F format:

SETTING
DATAFILE = "TEST1 . DATn ;
CONT -> DATAFILE:%F;
END

Table 2-6 lists the available formats for controller dialogs:

Table 2-6: Controller Dialog Format

CONT 6 D E F G H 0 S

INTeger X X X X X X

FLOAT X X X

z X X X X X X

- ---

Default Width 32 10 24 19 8 11

NOTE

IPG converts all controller dialogs, except those using the %F
format, to strings before sending them to the instrument. Therefore,
it is very important to properly specify modifiers if and when they
are used. For example, if the value lo .1 was to be sent to the
instrument, and the modifier 2.1 G was specified, only 10 would be
sent. This occurs because IPG truncates data based on the modifi-
er format specified. When truncation occurs, a warning message is
generated by IPG. In this case, the proper modifier should have
been 4 . 1 ~ . This problem can be prevented by using the %G modi-
fier format rather than the N . MG modifier format.

TekTMS Instrument Front Panel Developer User Manual 2-53

lnstrument Dialog Formats

In an instrument dialog, the format can be specified for a variable.

To specify the format, each variable is followed by a colon, followed by the
format. The format specification begins with a % and ends with a format
character. Between the % and the format character one may specify the
modifiers, width, and precision.

The following are examples of specifying formats:

The following list shows the format types that are available, what they are
used for, and the default field widths:

%nD integer, the numbers 0 - 9, + and - . n specifies the number
of digits. Default width of 10 if n is not specified.

%n.mG floating point, integers, and numbers with decimal points. n
defines the total field size, including the decimal point, and m
defines the maximum number of characters following the
decimal point. Default width of 19 if n is not specified

%n.mE integers, floating point, and exponential numbers. Scientific
notation characters are 0 - 9, + and -, E ore. n defines the
total field size, including the decimal point, m defines the
maximum number of characters following the decimal point.
Default width of 24 if n is not specified.

%nB binary, the numbers 0 and 1. The number is assumed to be
unsigned and is interpreted as right justified. n specifies the
number of digits. Default width of 32 if n is not specified.

%nO octal, the numbers 0 - 7. n specifies the number of digits.
Default width of 11 if n is not specified.

%nH hexadecimal, the numbers 0 - 9 and the letters A - F. Input
is assumed to be unsigned. n specifies the number of digits.
Default width of 8 if n is not specified.

%nS string. n specifies the number of characters. All characters are
accepted if n is not specified - no default width.

%F file name (no default width)

If the specified format is incompatible with the type of the variable, an error
is reported.

Binary, Octal, and Hexadecimal formats are used to read ASCII string repre-
sentations of these types of numbers; they do not read binary representa-
tions of these formats.

If n is not specified, the processing is Free Format. lnput is accepted until
either a maximum number of bytes have been received, or a non-valid
character is received for that field.

2-54 Instrument Script Language Descriptions

If the format is not specified, the type of the variable is taken as the default
format and the format is Free Format.

You can use appropriate width or width and precision modifiers with these
format types. The following are examples of specifying field widths and
using precision modifiers with format types:

CONT -> VAR1:%6D;
CONT -> VARl:%12.6E;

If the format width is specified but is not large enough to accommodate the
number, an error is reported.

If the width is specified and the number of digits for the number is less than
the width, the remaining characters are discarded.

The file name format is used with a string variable and indicates that the
entire transaction is between a file and an instrument. Using %F in an Instru-
ment dialog will place all of the data read from the instrument into a data file.
If you use the %F format, it must be the only format specified in the dialog, or
an error will be reported.

Following is an example of using the %F format:

QUERY
DATAFILE = "RESPONSE.DATU;
INST -> DATAFILE:%F;

END

Table 2-7 lists the available formats for lnstrument dialogs:

Table 2-7: lnstrument Dialog Format

-- -

STRing X X

INTeger X X X X X X

FLOAT X X X

Default Width 32 10 24 19 8 11

Common Problems when Using lnstrument Dialog
Formatting

Not Enough Data Received - Parsing of an instrument dialog takes
place from left to right. If the string received from the instrument does not
contain enough bytes to completely parse the lnstrument dialog, an ERROR
is reported. Following is an example:

TekTMS Instrument Front Panel Developer User Manual 2-55

MEASUREMENT
TMPVAR VAR1:STR;
INST -> VAR1:%5S;

END

Assuming that the string returned from the instrument is ON, an error is
reported because the string returned from the instrument contains only two
characters and the lnstrument dialog requires that five bytes be available.

Too Much Data Received - If the string returned from the instrument
contains more bytes than required to parse an instrument dialog, then the
excess bytes are ignored (the rest of the buffer is flushed). Following is an
example:

MEASUREMENT
TMPVAR VAR1:INT;
INST -> VAR1;

END

Assuming that the string returned from the instrument is 12 VOLTS, V A R ~ is
assigned the value 12, and the rest of the string, VOLTS, is ignored.

Non-Numeric Character in a Numeric Format Handling - If the
width (for example, n) is specified in the format, then a non-valid character, if
received before n characters have been received, delimits the input. A
non-valid character is a character that is not compatible with the format;
e.g., non-digit for %D format, or non-binary for %B format. If the first character
is a non-valid character, numeric conversion is stopped at the invalid charac-
ter and no characters are processed.

2-56 Instrument Script Language Descriptions

ISL Keywords Table 2-8 provides an alphabetical list of the reserved keywords in the Instru-
ment Script Language. You can not use these keywords for any other pur-
pose, such as naming a variable; they are reserved for ISL use.

Table 2-8: ISL Keywords Listed Alphabetically

AND

ASC l l

ATN

BAND

BAUD

BINARY

BNOT

BOR

BXOR

CDSBUS

CHECKBOX

CHR

CLOSE

CONNECT

CONT

CONTROLLER

CONTROL

CONTROL-
GROUP

CONTROLTITLE

DATABITS

DCL

DEFAULT

DEFAULTPOS

DISPLAY

DO

EDIT

EDITBOX

ELSE

END

ENDlF

EOI

EOM

FASTDCREAD

FASTDCWRITE

FLOWCONTROL

FALSE

FILE

FLOAT

GET
GPlB

GTL

HELP

HSCROLL

IF

I FC
INST

INSTRUMENT

I NT

LEARN

LISTBOX

LLO

MEASURE

MEASURE-
MENT

MIDSTRING

MXI

NO

NORMALCLOSE

NORMALOPEN

NOT

NUMCOLS

NUMPOS

NUMROWS

OFF

ON

ONEOFGROUP

OPEN

OR

PARITY

PUSHBUTTON

QUERY

RADIOBUTTON

READLENGTH

REM

REMARK

REN

RS232

SCANSTRING

SCRIPT

SCROLLHORZ

SCROLLVERT

SDC

SERIALPOLL

SET

SETTING

SKIP

STATE

STOPBITS

STR

STRING

TEMPVAR

TEXT

TEXTBOX

THEN

TIM

TIMEOUT

TITLE

TMO

TMPVAR

TO

TOLEFTOF

TORIGHTOF

TOSCRIPT

TOSCRIPTOFF

TOSCRIPTON

TRUE

UNL

UPDATE

UPDATELIST

VIEW

VSCROLL

VXIEVENT

VX5520

VXllNT

VXllNTERNAL

WAVE

WAVEFORM-
DISPLAY

WAVEFORM-
TOADIF

WAVEFORMTO-
VAR

WHILE

YES

TekTMS Instrument Front Panel Developer User Manual 2-57

Table 2-9 lists the ISL keywords by their use.

Table 2-9: ISL Keywords Listed by Group

BUSNOTE BAUD TROL TIMEOUT

CDSBUS GPlB TMO

DATABITS MXI VX5520

EOI PARITY VXIEVENT

EOM RS232 VXllNT

FLOWCON- STOPBITS VXllNTERNAL

CONTROL Block CHECKBOX

CLOSE

CONTROL

CONTROLTITLE

DEFAULT

DEFAULTPOS

EDIT

EDITBOX

FALSE

FILE

FLOAT

HSCROLL

I NT

LISTBOX

MIDSTRING

NO

NORMALCLOSE

NORMALOPEN

NUMCOLS

NUMPOS

NUMROWS

OFF

ON

ONEOFGROUP

OPEN

PUSHBUTTON

RADIOBUTTON

SCANSTRING

SCROLLHORZ

SCROLLVERT

STATE

STR

STRING

TEXTBOX

TITLE

TOLEFTOF

TORIGHTOF

TOSCRIPT

TOSCRIPTOFF

TOSCRIPTON

TRUE

UPDATE

UPDATELIST

VSCROLL

WAVE

WAVEFORM-
DISPLAY

YES

CONTROL- CONTROL-
GROUP Block GROUP

Format :%

Functions CHR SERIALPOLL WAVEFORM-

FASTDCREAD SKIP TOADIF

FASTDCWRITE TIMEDELAY WAVEFORMTO-
VAR

READLENGTH

GPlB ATN IFC TIM
Commands DCL

GET

LLO

REN
UNL

GTL SDC UNT

LEARN Block ASCII BINARY LEARN

Miscellaneous HELP REM REMARK

2-58 Instrument Script Language Descriptions

Table 2-9: ISL Keywords Listed by Group (Cont.)

Operators & <= BAND
* - - BNOT

+ -- -- BOR
- > BXOR

I => NOT
< AND OR

Script Block SCRIPT
- -- - - -

SETTINGS and CONT IF SET
MEASUREMENT CONTROLLER INST SETTING
Blocks

DISPLAY INSTRUMENT TEMPVAR

DO MEASURE THEN
ELSE MEASURE- TMPVAR
END MENT TO
ENDlF QUERY WHILE

VIEW Block CONNECT TEXT VIEW

TekTMS Instrument Front Panel Developer User Manual 2-59

2-60 Instrument Script Language Descriptions

Section 3
Writing Scripts

Writing Scripts

Introduction
The Editor

With TekTMS lnstrument Script Language (ISL), developing scripts requires
only a word processing editor that produces ASCll character code. For
example, the Windows Notepad word processor has ASCII output and can
be used easily with this section to write an example script.

Figure 3-1 shows Windows Notepad with the TDMS120.ISD file opened. You
can save an *.ISD file with Notepad, then call it up in IPG and test it. See
Testing Script Files, in this section, for further information.

Learn uar:STR
S e t t i n g

cont - > u a r ;

Measurement
cont - > "SET?";
i n s t - > u a r ;

View "ACU"

Tex t "DM5120 A C VOLTMETER" @ 5 , l . 0;
Tex t "ACCURACY" @ 3 . 7 , 6 . 5 ;
Connect ~12.5,7),(14,7).~14,14),(2214),(227)~(337);

C o n t r o l G r o u ~
C o n t r o l acuacq:INT PushButton @ 18.7 ,15

REMARK ... acq f o r a c q u i r e

Figure 3-1 : Windows Notepad with TDM5120.ISD Text

References

Refer to the other sections of this manual for formatting details while devel-
oping scripts. Section 2, ISL Descriptions, gives coding details on all blocks
and related statements of the script structure.

Refer to a script model that is with your IPG software. Appendix C,
TDM5120.ISD Script Printout,contains a printout of that entire TDM5120.ISD
script model.

TekTMS Instrument Front Panel Developer User Manual 3- 7

Writing Scripts

Refer to the respective bus interfacing manual relative to each different
instrument for which you write or modify scripts.

The Script Model

The script file TDM5120.ISD is provided with IPG on one of the software
diskettes. It can be used as a reference for the keywords and their arrange-
ments needed to produce a script for front panel and computer-to-instru-
ment interfacing.

NOTE

When you name your scripts, remember that they cannot have the
same names as the Device Names defined in your GPIB. COM file.
If you have configured DM51 20, for example, in your IBCONF; you
cannot use DM5120.ISD as a script file name. Notice that the
DM5120 script model name is TDM5120.ISD.

All instrument scripts will use the same basic grammar for script develop-
ment. Each instrument, however, will have its own special command syntax
for use within the scripts for bus communication.

Coding for any particular bus parameters is explained with BUSNOTE Block
description in Section 2. In the TDM5120 script, the coding is simply GPIB,
with END.

This section will illustrate writing a script using the block grammar and
instrument commands in Windows Notepad.

Detailed examples are included in this section to illustrate the concepts of
each script block and associated statements.

3-2 Writing Scripts

Writing Scripts

Script Planning
Charting A Front Panel

Display - IPG Software uses character size to facilitate locating coordinate
points on the display. Coordinate portions begin at the top left of the window
user space at 0,O horizontally and vertically.

Regardless of your display type (EGA, VGA, etc.) you define points on your
display based on character size.

You can plan on the location of front panel control types by laying out coor-
dinates of your display screen on a sheet of paper and then scaling controls
in the coordinates, using the following guidelines.

Control Sizes (numbers are character spaces):

Textbox and Editbox Height = NumRows + 2
Width = NumCols + 1
(add 2 in each case for scroll bar)

Listbox Height = NumRows + 1
(add 2 in for scroll bar)
Width = NumCols + 1

Pushbutton, Checkbox or Height = 2
Radiobutton Width = NumCols + 3

Instrument - The screen display controls relate to the instrument function-
ality. The illustration on the following page shows how information is passed
from the front panel control through the script to the instrument, and back.

Determining Control Types

The types of controls you will use in your scripts will be based on the instru-
ment functionality that you want to present. The types of controls may be
effected by the test system and the tests themselves. This manual section
will give you an idea of what can be done with a digital multimeter, but
cannot begin to cover all possibilities.

With the TDM5120.ISD model script, not all of the instrument's front panel
controls available are represented. The ACV function and all ranges will be
explained along with reading resolution selections and a filter switch with
filter values.

We have chosen the use of an IPG View to accommodate the DM51 20
instrument's ACV function, as shown in Figure 3-3. A DCV view is coded,
but not explained (you can easily add an OHMS and other functions with
other views in the script).

A Listbox is used for RANGE control, and a group of Radiobuttons is used to
control the resolution of the Measurement reading.

--

TekTMS Instrument Front Panel Developer User Manual 3-3

Writing Scripts

I n s t r u m e n t s Q p e r a t o r f i c t i ons Sun -

4 Step E d i t I n t e r a c t i o n I

D M 5 1 2 0 AC U O L T M E T E R I
H e a s u r e m e n t Communications Between - Script and Display to Show the

A CCURCICY Control and to Indicate Status.

a 4 D i g i t s

0 5 D i g i t s

.
I

I

I PG I

I

I

- J

Frontpanel Display & - - I I I

a I E n d I
E n d

C o n t r o l G r o u p
C o n t r o l a c v r a n g e : S T R

N u m R o w s 5 ; N u m C o l s 5;
C o n t r o l T i t l e "RANGE" ;
S t r i n g AUTO" , " 3 0 0 mu",

" 3 U", " 3 0 U", "300 U"
T o s c r i p t "AUTO" , "l", ..*.., ..3", ..4..;
U p D a t e L i s t a c v r e a d i n g :

E n d
S e t t i n g

c o n t - > " RANGE ". acvrange;
E n d
M e a s u r e m e n t

c o n t - > "RANGE?" ;
i n s t - > " ". a c v r a n g e . ";" ;

E n d
E n d I

j GPlB

I I

I I

Listbox SETTING1block
Communications to Set the

Instrument.
I I

I I

I ~ n d ~istdor ~easureAent I
V i e w "DCU"

T e x t " D M 5 1 2 0 DC U O L T M E T E R" I3 5,l . 0;

(Query) Block
Communications to Ask for
andRelate Instrument Status.

Script Instrument

Figure 3-2: lnstrument and Display Script Relationships

3-4 Writing Scripts

Writing Scripts

Figure 3-3: IPG View of DM5120 ACV Function

A Checkbox is used to turn the FILTER modifier switch (Ave) on and off; and
an EDITBOX was chosen to allow the operator to input filter values. A Text
box allows measurement readings from the instrument to the display.

We chose a Pushbutton (Acq) to acquire the Measurement reading upon
operator request because it is a momentary action.

Then, we chose a set of Radiobuttons for resolution (3.5, 4.5, 5.5 and
6.5 digit Measurement display) since they could be grouped. A List box
easily handles the RANGE with NUMROW and NUMCOL. A Checkbox is used to
turn on a FILTER switch; and an EDITBOX is used in conjunction with the
filter CHECKBOX to provide a way of entering filter values.

Interchangeability

Scripts should be designed such that one instrument can be easily replaced
with another of the same type (e.g., a power supply by one manufacturer
replaced by that of a different manufacturer). In order to make instruments
of the same type interchangeable, an instrument control that is common
between the two instruments must have the same Control ID (variable
name) in each script, and should be of the same control type (e.g., EDIT-
BOX, CHECKBOX, etc.) and the same data type (floating point, integer,
string, etc.). For user clarity, it also is desirable that the control's label be the
same on both instrument front panels.

TekTMS Instrument Front Panel Developer User Manual 3-5

Writing Scripts

Script Development
Procedures

To get started, invoke your ASCII editor of choice (Notepad, Word, etc.). As
a reminder, when you finish your script, save it with a *.ISD extension (exam-
ple: TDM5120.ISD). Also, matching the script name to the instrument name
will simplify locating that instrument script in your computer when needed,
but remember, you cannot name an *.ISD file with a name that is the same
as a Device Name in your GPIB IBCONF file.

Script and Description Presentation

Using this manual section you can write a script for the Tektronix DM51 20
Programmable Digital Multimeter using the detailed description of the exam-
ple script. The example script is shown in portions to highlight coding; and
descriptions of what that coding does are presented beside the script.

Appendix C, TDM5120.ISD Script Printout, has a printout of the complete
TDM5120.ISD script.

Notice also that the coding line(s) from that part of the script being de-
scribed is in bold type in the partial script frame.

The first line of the script we have developed is a remark (REMark) to identi-
fy the associated instrument.

REMARK - REM or REMARK must be the first keyword on each remark
line. Remarks can be placed on a line(s) anywhere in the script.

REM TEKTRONIX DM5120 DIGITAL MULTIMETER
SCRIPT "DM5120"

GPIB
END

VIEW "ACV"

TEXT "DM5120 AC VOLTMETER" @ 5,l.O;
TEXT "ACCURACY" @ 3.7,6.5;
CONNECT (12.5,7), (14,7), (14,14), (2,14), (2,7), (3,7) ;

Writing Scripts

Writing Scripts

Beginning a Script - The actual script is opened by typing SCRIPT and
then giving it a name in quotation marks.

Because of constraints caused by the Help message system, the script
name and control names must be unique in the first eight character spaces
(refer to Section 4, Help Editor, for further information.).

REM TEKTRONIX DM5120 DIGITAL MULTIMETER
SCRIPT "DM5120N

GPIB
END

VIEW " ACV"

TEXT "DM5120 AC VOLTMETER" @ 5,l.o;
TEXT "ACCURACY" @ 3.7,6.5;
CONNECT (12.5,7), (14,7), (14,14), (2,14), (2,7), (3,7);

Choosing a Bus -The bus types currently supported are GPIB, RS232
or VXI bus. For this script, GPIB is the bus type, with default parameters.

Refer to BusNote Block and GPIB Parameters in Section 2, ISL Descriptions
for EOM, EOI and TIMEOUT defaults and other information.

REM TEKTRONIX DM5120 DIGITAL MULTIMETER
SCRIPT "DM5120"

GPIB
END

VIEW "ACV"

TEXT "DM5120 AC VOLTMETER" @ 5,l.O;
TEXT "ACCURACY" @ 3.7,6.5;
CONNECT (12.5,7), (14,7), (14,14), (2,141, (2,7), (3,7);

Defining the View - To begin the ACV voltage view of this instrument
front panel, use the keyword VIEW and name the view "ACV~~.

REM TEKTRONIX DM5120 DIGITAL MULTIMETER
SCRIPT "DM5120"

GPIB
END

VIEW ACV"

TEXT "DM5120 AC VOLTMETER" @ 5,l.O;
TEXT "ACCURACY" 8 3.7,6.5;
CONNECT (12.5,7),(14,7), (14,14),(2,14),(2,7),(3,7);

TekTMS Instrument Front Panel Developer User Manual 3- 7

Writing Scripts

Text and Connect Statements - The first text statement specifies the
title for the ACV view - ~ ~ 5 1 2 o AC VOLTMETER, while the second text
statement specifies the group title for the Radiobuttons - ACCURACY.

CONNECT places a box around the resolution Radiobuttons.

REM TEKTRONIX DM5120 DIGITAL MULTIMETER
SCRIPT "DM5120"

GPIB
END

VIEW "ACV"

TEXT "DM5120 AC VOLTMETERf

1 @ 5 , l . O ;
TEXT NACCURACYN @ 3 . 7 , 6 . 5 ;

CONNECT (1 2 . 5 1 7) (1 4 1 7) (1 4 , 1 4) 1 (2 1 1 4) , (2 , 7) , (3 1 7) ;

Defining the First Control - The first control specified in this script will
be a Pushbutton. This control will be used to set the instrument to ACV
function and to initiate a measurement.

On the display screen, the Pushbutton will appear as a rectangle with ACQ
shown inside it due to coding in its CONTROL block. A statement,
UPDATELIST, will update instrument output to the MEASUREMENT display
with the variable ACVREADING.

Defining the CONTROLGROUP Block - To define a CONTROL-
GROUP block, simply type the keyword CONTROLGROUP.

TEXT "ACCURACY ,, @ 3.7,6.5 ;
CONNECT (12.5,7),(14,7),(14,14),(2,14),(2,7),(3,7);

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 18.7,15
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

3-8 Writing Scripts

Writing Scripts

Defining a CONTROL block - To specify the control characteristics for
this Pushbutton, we start a CONTROL block with the keyword CONTROL.

Then the control type is specified (in this case PUSHBUTTON).

Finally, the position of the Pushbutton on the display screen is positioned at
18 .7 5 characters across and 15 characters down.

As a reminder, the control coordinates specify the upper left hand corner of
the control.

TEXT "ACCURACY" @ 3.7,6.5;
CONNECT (12.5,7), (14,7), (14,14), (2,141, (2,7), (3 , 7) ;

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 18.7,15
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

Control Title - To show ACQ in the Pushbutton on the front panel display,
we entered the line STRING "ACQ".

TEXT "ACCURACY" @ 3.7,6.5;
CONNECT (12.5,7), (14,7), (14,141, (2,14) t (2,7), (3 , 7) ;

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 150,150
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

TekTMS Instrument Front Panel Developer User Manual 3-9

Writing Scripts

Using UpDateList -With the UPDATELIST statement, when the ACQ
Pushbutton is selected, the control ACVREADING will be updated.

TEXT "ACCURACY" @ 3.7,6.5 ;
CONNECT (12.5,7), (14,7), (14,14), (2,14), (2,7), (3 , 7) ;

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 150,150
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ";
UPDATELI ST ACVREADING ;

END
SETTING
CONT -> "ACV";

Ending a CONTROL block - To end the CONTROL block, use END.

CONTROL ACVACQ:INT
PUSHBUTTON @ 150,150

REMARK . . . ACQ FOR ACQUIRE
STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

END
END

Defining the SETTING block - The SETTING block is defined by the
keyword SETTING (or SET).

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 18.7,15
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ" ;
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

END

3-10 Writing Scripts

Writing Scripts

Controller to Instrument Command -This line causes the controller to
send "ACV" to the instrument.

ACV is a command defined by the DM51 20 firmware to turn on the function
ACV (AC voltage).

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 18.7,15
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING

CONT -> "ACV";

END

Ending the SETTING block - To end this SETTING block, use END.

Then, to end the CONTROL block, again use END.

CONTROLGROUP
CONTROL ACVACQ:INT

PUSHBUTTON @ 18.7,15
REMARK . . . ACQ FOR ACQUIRE

STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

END

Defining the Second Control -The next control used in the
TDM5120.ISD script is the Textbox. It is used to display the instrument
measurement.

As a reminder, the Textbox is a control with only a MEASUREMENT block.

TekTMS Instrument Front Panel Developer User Manual 3-1 1

Writing Scripts

Placing, Sizing and Labeling a Text Box - As with the last control, the
CONTROLGROUP block is defined, then the CONTROL block is defined.

The control data type and the control type are specified, followed by the
control display location.

The next line of control parameters specify the control size, 1 character
space deep and 2 0 character spaces wide.

Finally, the control title "MEASUREMENT~~S specified and the control is ended
with END.

Because this is a Textbox, the CONTROLGROUP block has no SETTING
block.

CONT -> "ACV";
END

END

CONTROLGROUP
CONTROL ACVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5
NlTMRows 1; NCTMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END
MEASUREMENT
CONT -> "SEND";
INST -> READING,";";

END
END

Defining a MEASUREMENT block - The MEASUREMENT block is
defined with the keyword MEASUREMENT. Other keywords that can be
used to start a MEASUREMENT block are MEASURE and QUERY

CONT -> "ACV";
END

END

CONTROLGROUP
CONTROL ACVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5

NUMROWS 1; NUMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END
MEASUREMENT
CONT -> "SEND";
INST -> ACVREADING,";";

END
END

3-72 Writing Scripts

Writing Scripts

Talking to the Instrument - This dialog sends the instruction I~SEND" to
the instrument.

CONT -> "ACV";
END

END

CONTROLGROUP
CONTROL ACVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5
NUMROWS 1; NUMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END
MEASUREMENT
CONT -> "SENDN;
INST -> ACVREADING,";";

END
END

Instrument Measurement Update Path - This dialog receives and
parses the instrument response to the previous command and places the
measurement from the instrument into the control variable acvreading.

The floating variable will return the instrument reading. It will be in the format
established by the variable and the instrument firmware (refer to the instru-
ment manual for specific command data). In this case the measurement is in
the variable acvreading and will end when a semicolon is read.

CONT -> "ACV";
END

END

CONTROLGROUP
CONTROL ACVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5
NUMROWS 1; NUMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END
MEASUREMENT

CONT -> "SEND";
INST -> ACVREADING,";";

END
END

TekTMS Instrument Front Panel Developer User Manual 3-13

Writing Scripts

Ending the MEASUREMENT block -The MEASUREMENT block is
ended with END, the same as the SETTING block.

End the CONTROLGROUP block with END.

CONT -> "ACV";
END

END

CONTROLGROUP
CONTROL ACVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5
NUMROWS 1; NUMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END
MEASUREMENT
CONT -> "SEND";
INST -> ACVREADING,";";

END
END

Setting the Resolution - The DM51 20 has a capacity for 3 (3.5), 4 (4.5),
5 (5.5), or 6 (6.5) digits of resolution. Setting the desired resolution is done
with a set of Radiobutton controls.

The coding for only one Radiobutton will be shown in the following example.
See Appendix A, TDM5120.ISD Script Printout, for the differences between
the script coding illustrated and that of the other three Radiobuttons.

Installing a Radiobutton -This CONTROLGROUP block and CONTROL
block are defined in the same manner as the previous two controls.

Name the Radiobutton with the STRING Statement.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;
ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, ";";

IF (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

3-14 Writing Scripts

Writing Scripts

Group the Radiobuttons -All four resolution Radiobuttons are made
members of the same group (ACCURACY) with the ONEOFGROUP statement.

When one Radiobutton of the group is turned ON, the others will be turned
OFF.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;
ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, ";";

IF (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

Updating Measurement On Display - The UPDATELIST statement
provides for the following action: When the ,, 3 DIGITS" Radiobutton is
selected, the control ACVREADING will be updated.

End the CONTROL block with END.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;
ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, " ;" ;

IF (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

TekTMS Instrument Front Panel Developer User Manual

Writing Scripts

Setting the Resolution with IF-THEN -When this control is selected,
the IF statement determines if it is being turned on. If it is, then the control-
ler dialog sends "DIGIT 3 ,, to the instrument.

The IF statement is terminated with ENDIF.

End the SETTING block with END.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY" ;
UPDATELIST ACVREADING;

END
SET

IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;
ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, " ; " ;

IF (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

3-16 Writing Scripts

Writing Scripts

MEASUREMENT block Variables -The MEASUREMENT block, de-
fined with the keyword QUERY, is used to send a query to the instrument
for the state of the resolution setting.

The TEMPVAR statement declares a variable (local to the MEASUREMENT
block) to store the response from the instrument.

The Assignment statement (ACVTHREE = 0 ;) INITIALIZES THE CON-
TROL VARIABLE TO 0.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==1) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY

TEMPVAR TMP : STR;

ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, " ;" ;

IF (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

Controller and lnstrument Dialogs -The controller dialog CONT ->

f l ~ ~ ~ ~ ~ ? u ; queries the instrument for the number of digits of resolution.

The instrument dialog INST -> "DIGIT " , TMP, " , " ; receives and
parses the instrument response, placing the resolution in TMP. The instru-
ment response is of the form "DIGIT 3 ; ", SO TMP will contain a 1 character
string.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;

TekTMS Instrument Front Panel Developer User Manual 3-1 7

Writing Scripts

ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT ", TMP, ";";
IF (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

Another IF Statement - This IF statement checks to see if the current
resolution is 3 (3.5) digits and sets the control variable ACVTHREE to 1 (ON)
if it is.

The IF statement is terminated with ENDIF.

End the MEASUREMENT block with END.

End the CONTROLGROUP block with END.

CONTROLGROUP
CONTROL ACVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;
ACVTHREE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, " ;" ;

I F (TMP=="3") THEN
ACVTHREE = 1;

ENDIF
END

END

You can use this same CONTROLGROUP for the next four Resolution selec-
tions with a few modifications. The differences are in the control variable; in
the control location; in the control title; in the controller dialog within the
SETTING block; and in the expression within the IF statement.

For further information, refer to Appendix A, TDM5120.ISD Script Printout.

3-18 Writing Scripts

Writing Scripts

Many-to-one Control Groups

CHECKBOX and EDITBOX - Test instrumentation frequently requires
setting and measurement results from more than one control based on the
interdependence of those controls. In the case of the DM51 20, the filtering
function is turned on with a switch and keys are used to enter the filter value.

Within this script a CHECKBOX is used to turn on filtering and in conjunction
(within the same CONTROLGROUP) an EDITBOX is used to accept an
operator filter value input.

CHECKBOX Control - Define a CONTROLGROUP block for the CHECK-
BOX.

Define a CHECKBOX CONTROL block the same as with previous CONTROL
blocks.

End the CHECKBOX control with END.

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,15.0
STRING "AVE" ;
UPDATELIST ACVREADING;

END
CONTROL ACVF1LTAVAL:INT EDIT @ 8.7,15.0
NUMROWS 1;NUMCOLS 5;

END
SETTING
IF (ACVFILT==l) THEN
CONT -> "FILTERVAL", ACVFILTVAL,";FILTER ON";
ELSE
CONT - "FILTER OFF";

ENDIF
END
MEASUREMENT
TEMPVAR FILT0N:STR;
CONT -> "FILTER?;FILTERVAL?";
INST -> " ",FILTON,";"," ",ACVFILTVAL,";";
IF (FILTON=="ONn) THEN

ACVFILT=l;
ELSE

ACVFILT=O;
ENDIF

END
END

TekTMS Instrument Front Panel Developer User Manual 3-19

Writing Scripts

EDITBOX Control - A second CONTROL block is defined for this CON-
TROLGROUP prior to Setting and MEASUREMENT blocks.

End the EDITBOX CONTROL block with END.

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,15.0
STRING "AVE";
UPDATELIST ACVREADING;

END
CONTROL ACVF1LTAVAL:INT EDIT @ 8.7,15.0

NLTMROWS 1;NUMCOLS 5;

END
SETTING
IF (ACVFILT==l) THEN
CONT -> "FILTERVAL", ACVFILTVAL,";FILTER ON";
ELSE
CONT - "FILTER OFF";

ENDIF
END
MEASUREMENT
TEMPVAR FILT0N:STR;
CONT -> "FILTER?;FILTERVAL?";
INST -> " ",FILTON,";"," ",ACVFILTVAL,";";
IF (FILTON=="ON") THEN

ACVFILT=l;
ELSE

ACVFILT=O;
ENDIF

END
END

Writing Scripts

Writing Scripts

A SETTING block With Two Variables - Both control variables defined
with the CHECKBOX and the EDITBOX will be used in the CONTROL-
GROUP SETTING block.

In the SETTING block we use an IF statement to determine if the CHECK-
BOX is ON or OFF (the variable ACVFILT is equal to 1 if it is ON).

If the ACVFILT is equal to ON (I) , we then use the second control variable
as part of a command sent to the instrument.

End the IF statement with ENDIF.

End the SETTING block with END.

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,15.0
STRING "AVE";
UPDATELIST ACVREADING;

END
CONTROL ACVF1LTAVAL:INT EDIT @ 8.7,15.0
NUMROWS 1;NUMCOLS 5;

END
SETTING

IF (ACVFILT==l) THEN
CONT -> ttFILTERVAL"t ACVFILTVAL,";FILTER ON";
ELSE
CONT - "FILTER OFFtt;

ENDIF
END
MEASUREMENT
TEMPVAR FILT0N:STR;
CONT -> "FILTER?;FILTERVAL?";
INST -> " ",FILTON,";"," ",ACVFILTVAL,";";
IF (FILTON=="ON") THEN

ACVFILT=1;
ELSE

ACVFILT=O;
ENDIF

END
END

TekTMS Instrument Front Panel Developer User Manual 3-2 7

Writing Scripts

Measurement With Two Control Variables - First we declare a tempo-
rary variable, FILTON, to contain the ON or OFF status of the instrument.

Then we query the instrument for the ON or OFF status of the filter and the
current filter value.

Finally, we read the instrument response and parse the result, placing the
data in FILTON and ACVFILTVAL (temporary and control variables).

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,ls.O
STRING "AVE";
UPDATELIST ACVREADING;

END
CONTROL ACVF1LTAVAL:INT EDIT @ 8.7,15.0
NUMROWS 1;NUMCOLS 5;

END
SETTING
IF (ACVFILT==l) THEN
CONT -> "FILTERVAL", ACVFILTVAL,";FILTER ON";

ELSE
CONT - "FILTER OFF";

END IF
END
MEASUREMENT

TEMPVAR FILT0N:STR;
CONT -> #,FILTER? ; FILTERVAL?ll;
INST -> " ",FILTON,ll;ll," ",ACVFILTVAL,ll;";
IF (FILTON=="ON") THEN

ACVFILT=l;
ELSE

ACVFILT=O;
ENDIF

END
END

3-22 Writing Scripts

Writing Scripts

An IF Statement for Conversion -This IF statement first examines the
FILTON temporary variable to see if it contains uo~fr. If so, then the control
variable ACVFILT is given the value 1. Otherwise, ACVFILT is given the
value 0.

The integer 1 turns the Filter CHECKBOX display ON, and 0 turns it OFF
(there is an x in the box display when the switch is ON and nothing in the
box when it is OFF).

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,15.0
STRING "AVE";
UPDATELIST ACVREADING;

END
CONTROL ACVF1LTAVAL:INT EDIT @ 8.7,15.0
NUMROWS 1;NUMCOLS 5;

END
SETTING
IF (ACVFILT==l) THEN
CONT -> "FILTERVAL", ACVFILTVAL,";FILTER ON";
ELSE
CONT - "FILTER OFF";

ENDIF
END
MEASUREMENT
TEMPVAR FILT0N:STR;
CONT -> "FILTER?;FILTERVAL?";
INST -> " ",FILTON,";"," ",ACVFILTVAL,";";
IF (FILTON==ttONt') THEN

ACVFILT=l;
ELSE

ACVFILT=O;
ENDIF

END
END

List or Listbox -This Listbox control is used to allow range selections. In
this DM51 20 AC VOLTMETER view there are six range settings. A table in
the DM5120 Instrument Interfacing Guide (and other associated manuals)
provides all functionlrange and range-number relationships.

TekTMS Instrument Front Panel Developer User Manual 3-23

Writing Scripts

CONTROLGROUP for Function Ranges - The CONTROLGROUP and
Control type blocks are defined.

As with previous examples, we define the CONTROLGROUP block and
CONTROL block. We specify the control variable and its data type; the
control LISTBOX and its position; and the size of the Listbox and its title.

CONTROLGROUP
CONTROL ACVRANGE:STR LISTBOX @ 18.7,8.0

NUMROWS 5;NuMCOLS 5;
CONTROLTITLE I1RANGE" ;
STRING " AUTOn,"300 MV"," 3 V"," 30 VU,"300 V";
TOSCRIPT "AUTO","1","2","3","4";
UPDATELIST READING;

END
SETTING
CONT -> "FLUJGE ",ACVRANGE;

END
MEASUREMENT
CONT -> "RANGE?";
INT -> " ",ACVRANGE,";";

END
END

END
END

Setting Range Strings -The STRING statement defines the contents of
each row of the Listbox.

The TOSCRIPT statement defines the value that will be found in the control
variable in the SETTING block.

CONTROLGROUP
CONTROL ACVRANGE:STR LISTBOX @ 18.7,8.0
NUMROWS 5;NUMCOLS 5;
CONTROLTITLE "RANGE" ;
STRING AUT0m,M300 MVMlw 3 Vwln 30 VM111300 V";
TOSCRIPT llA~Ollllllll "2" "3" "4"

I I I ;
UPDATELIST READING;

END
SETTING
CONT -> "RANGE ",ACVRANGE;

END
MEASUREMENT
CONT -> "RANGE?";
INT -> " ",ACVRANGE,";";

END
END

END
END

3-24 Writing Scripts

Writing Scripts

There is a one-for-one relationship between the entries in the STRING state-
ment and those in the TOSCRIPT statement. For example, the third element
of the STRING statement is selecting the 3 v RANGE AS A LISTBOX
DISPLAY. THE THIRD VALUE OF TOSCRIPT is 2 for the control variable
ACVRANGE.

Function RANGE SETTING block - This SETTING block functions the
same as previously defined SETTING blocks with the exception that AC-
VRANGE will contain one of the elements from the TOSCRIPT statement.

End the SETTING block with END.

CONTROLGROUP
CONTROL ACVRANGE:STR LISTBOX @ 18.7,8.0
NUMROWS 5;NUMCOLS 5;
CONTROLTITLE "RANGE";
STRING " AUTO", "300 MV", " 3 V", " 30 V", "300 V";
TOSCRIPT "AUT0","1","2" , , ,3,, , , ,4 , , ;
UPDATELIST READING;

END
SETTING

CONT - > "RANGE " , ACVRANGE ;
END
MEASUREMENT
CONT -> "RANGE?";
INT -> " ",ACVRANGE,";";

END
END

END
END

Function RANGE MEASUREMENT block -The MEASUREMENT
block functions the same as previously defined MEASUREMENT blocks with
the exception that the contents of ACVRANGE must correspond to one of the
elements in the TOSCRIPT statement.

End the MEASUREMENT block with END.

End the CONTROLGROUP with END.

End the View block with END.

You can add views at this point if you want more functions in your script
(OHMS, etc.).

End the script with END.

TekTMS Instrument Front Panel Developer User Manual 3-25

Writing Scripts

CONTROLGROUP
CONTROL ACVRANGE:STR LISTBOX @ 18.7,8.0
NUMROWS 5;NUMCOLS 5;
CONTROLTITLE "RANGE";
STRING " AUT0","300 M V " , " 3 V"," 30 Vn,"300 V";
TOSCRIPT "AUTOn,"1","2","3","4";
UPDATELIST READING;

END
SETTING
CONT -> "RANGE " , ACVRANGE ;

END
MEASUREMENT

CONT -> "RANGE?";
INT - > If " , ACVRANGE , " ; " ;

END
END

END
END

Save Your Script File -With Windows Notepad you simply call Save
As ... and give the file a name (in this case, MY5120.ISD). -

NOTE

Remember, you cannot name an *.ISD file with a name that is the
same as a Device Name in your GPlB IBCONF file.

3-26 Writing Scripts

Writing Scripts

Testing Scripts With this TDM5120.ISD model script, you have a driver to control the
Tektronix DM51 20 digital multimeter on a GPlB bus. The next action, after
writing the script, is to test the operation of your script.

Initializing the Script

Initialize IPG from Windows. Select lnstruments from the main menu bar,
then select Select ... from the lnstruments menu, as shown in the following
illustration.

Run Oetions I rans la te

%I Controller b

Select the TDM5120.ISD script from the lnstruments Select dialog box, as
shown in the following illustration. You will see the script file name appear in
the Drivers: edit control box; and GPlBO and GPl5l appear in the Port: list
box.

After entering a Primary Address: for your DM51 20 (the factory default is
16) and a TMS Name: (DM5120), select the Add Pushbutton, then select
OK to load the script.

TMS Name Driver Port Address

Drivers:
tdm512b.isd

c:\i pg

pK-J

If IPG will not accept your new script, refer to A Rejected Script, following in
this section.

TekTMS Instrument Front Panel Developer User Manual 3-27

Writing Scripts

Activating Controls

Checkbox -The Checkbox requires a single click of the mouse to acti-
vate.

Listbox - The List or Listbox control is implemented with a double click of
the mouse, or a single click click of the mouse, followed by pressing the
ENTER or RETURN keyboard key.

Pushbutton and Radiobutton - The Pushbutton or Radiobutton re-
quires a single click of the mouse to activate.

Checkbox with Editbox - A many-to-one group such as a Checkbox
with an Editbox requires a single click of the mouse on the Checkbox and
pressing the RETURN or ENTER keyboard key after the Editbox value has
been entered.

When you test your AVE control from the TDM5120.ISD script, you may
need to change both controls before activating them simultaneously.

Change the state of your AVE control by pointing and clicking with the
mouse. Then move the cursor to the filterval Editbox (next to AVE) and click.
Type in the filter value you want and press the ENTER or RETURN keyboard
key to execute both controls simultaneously.

A Rejected Script

Error messages will be shown on your display if the script cannot be loaded
by IPG. You will see one or more error messages, and one parse-failed
message.

Error Messages - Explanatory error messages will be displayed on your
screen when a script is rejected. Line numbers and the type of error will be
indicated.

At this point you should click on the error OK Pushbutton(s) and on the
parse failed OK Pushbutton.

Now Cancel the IPG loading function. Return to the word processor and
repair the script. Then try loading again.

The Reloading Process - If you have a script loaded in IPG and you
need to replace it with the same script after its has been modified, you must
first delete the residing script from the IPG program. A change made in your
word processor and then saved on a disk, will not update the script in your
controller RAM.

3-28 Writing Scripts

Writing Scripts

To delete the old script, select Instruments from the IPG main menu bar,
then select Select ... Highlight the name of the script you want to delete,
select the Delete Pushbutton, then select the OK Pushbutton. (If you do not
select the OK Pushbutton, the script will not be deleted.)

Repeat the initializing process to load your modified script.

If you have more than one version of the same script in a test
procedure currently in IPG, you must delete all versions in order to
reload a modified script. If any version of the same script is left in
RAM, it will be used by IPG for reloading.

Any time you make a change to a script while in IPG, you must delete the
related *.ED in your working memory. The *.ISD is always called to RAM
from disk for compilation with the IPG software.

Generating Test
Procedures

Refer to your Interactive Procedure Generator Users Manual for detailed
instructions on test procedure generation.

Modifying Scripts If you need to generate new scripts, it may be easier to copy and modify an
existing script. To do this, perform the following steps:

1. Copy Existing Script. Make a copy of the script and give it a new name.
The new name should reflect the make and name of the instrument. It
should also have an .ISD extension.

2. Mark Changes. Make a printout of your comparable ASCll script file.
Use the printout to locate instrument commands. Mark the changes
necessary. Use instrument interfacing manuals to determine equivalent
and relevant commands.

3. Make Changes. With your word processor (any one with ASCll output)
insert the new instrument commands where necessary in the existing
script to make a new script that will work with the different instrument.
When you have finished with making substitutions of commands in a
script, save the modified script with its new name.

TekTMS Instrument Front Panel Developer User Manual 3-29

Writing Scripts

3-30 Writing Scripts

Binary ISD Files

A Binary ISD file consist of a normal ASCll ISD file converted into a pre-
parsed binary format. The advantage of a Binary ISD file over an ASCll ISD
file is that a Binary ISD file loads faster than an ASCll ISD file which repre-
sents the same base ISD.

Using Binary The MS Windows application Binary is simple to use. Start the application
(typically by double clicking on the Binary icon in the TekTMS application
group), Select the ISD files to convert from ASCll to binary, and then press
the Translate button.

The Binary application reads each of the selected ISD files and creates a
matching file with the .ISB file name extension. As each ASCll ISD file is
translated the Operation: text box displays each view name as it is trans-
lated. When translation of all selected files is complete, the Operation: text
box displays the status Complete.

TekTMS Instrument Front Panel Developer User Manual

Binary ISD Files

Selected files:

2 files selected

The File menu item allows the list of selected ISD files to be saved for later
use. Translation from ASCll to binary is normally only done once, but if the
ASCll versions are modified, the binary form must be created again. Saving
the list of translated ASCll ISD files makes creation of new binary form ISD
files easy.

2 files selected

The File menu contains several choices.

w New - Delete the current list of ISD files from the selections: control.

w Open - Open an existing Binary .CFG file. The .CFG file contains a list
of ISD file names from a previous use of Binary.

w Save - Save the current list of selected ISD files. If the .CFG file is not
named, the Save As function is called.

w Save As - Save the current list of selected ISD files under a new name
.CFG file.

w Exit - Close Binary. If the current list of selected ISD files has been
changed since the last save, a message box will appear asking to verify
whether or not the list of ISD files should be saved or abandoned.

3-32 Writing Scripts

Binary ISD Files

Using Binary ISD Binary ISD files may be used by either TekTMSIIPG or by TekTMSIIDG. Both

Files applications show a list of available file with the extension .IS?. Any file with
an extension having the first two characters 'IS' will be shown in the selec-
tion list. Select the .ISB file and proceed as though you had selected an .ISD
file.

TekTMS Instrument Front Panel Developer User Manual 3-33

Binary ISD Files

3-34 Writing Scripts

Section 4
Help Editor

Help Editor

The Help Editor is a utility program within IPG that allows you to create or
modify help messages (.HLP files) for your scripts. These messages are
available as you use scripts with IPG to configure "soft" front panels for
programmable instrumentation as part of IPG test procedure generation.
The messages display additional information about the soft front panel.

IPG lnstrument Script Language (explained in previous sections) allows the
user to create new scripts for programmable instruments in the IPG test
procedure generation system. The Help Editor allows you to create help
message files for new scripts; and to place in the message files those mes-
sages you find most helpful.

The Help Editor also allows you to customize messages in existing script
help files. You can use the Help Editor to rewrite help messages, for exam-
ple, in another national language. Also, the Help Editor can be used to print
a help message file.

The Help Editor is part of the IPG software package; it is an application that
runs under Microsoft Windows.

Refer to your Interactive Procedure Generator (IPG) Users Manual for instruc-
tions on how to use *.HLP files with related scripts. Script and help files have
identical names preceding their extensions. However, in using Yelp with IPG
you will not see the help file names.

Learning to Use the This part of the manual is organized in tutorial format and describes how to

Help Editor use the Help Editor to do the following:

Modify a help message (.HLP) file for an instrument soft front panel
script

Create a new help file for use with a new, user-created script, add new
messages, delete a message, and modify a message in a script help file

m Print a help message file

TekTMS Instrument Front Panel Developer User Manual 4- 1

Help Editor

Starting the Help Editor Program

To begin using the Help Editor program, start Microsoft Windows, and then
run HELPED.EXE.

The following illustration shows the Help Editor window as it appears when
you start the program.

Help Message Files - lnstrument front panel help messages are in a file
associated with the specific script that defines the instrument soft front
panel. As an example, the help messages for the DM51 20 soft front panel
are in a file, TDM5120.HLF that is associated with the DM51 20 script file,
TDM5120.ISD. The TDM5120.HLP and TDM5120.ISD files are provided with
IPG software.

You can modify, add, and delete messages in a soft front panel help file,
provided that you also make the appropriate changes to the script. (For
example: if you change a script control name and variable for the DM5120,
you must change that name in both DM51 20 files, TDM5120.ISD and
TDM5120.HLP)

Also, if you create a new script, you can use the Help Editor to create a file
of help messages for the new instrument soft front panel. The messages
from help files are available while the new soft front panel is being set up
during IPG test procedure generation.

Help File and Script File Internal Relationships -The lnstrument
menu item from Help in the IPG front panel display finds the file name given
by the script code. The script CONTROL command finds the related ID and
the name given by CONTROL in the script. Therefore, you must match the
script name and each control name when modifying or developing script
and help files.

4-2 Help Editor

Help Editor

For example: TDM5120.ISD is opened with SCRIPT "DM51200

REM TEKTRONIX DM5120 DIGITAL MULTIMETER

SCRIPT "DM5120"

GPIB
END

The Help function uses the script name to find the related help message.
When Help, is called from the IPG front panel display, a help message
related to Script DM5120 is shown. A part of the actual script is shown
above to help illustrate that relationship.

For each control, the Help function uses the control variable to find the
related help message. When you select Help and Control from the IPG front
panel display, a help message related to the currently focused control is
shown. A related part of the actual script is shown below to help illustrate
that relationship.

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,15.0
STRING "AVE";
UPDATELIST READING;

END
CONTROL ACVF1LTVAL:INT EDIT @ 8.75,15.0
NUMROWS 1;NUMCOLS 5;

END

If the cursor is on the Checkbox control (STRING AVE), the ACVFILT ID in
the help file is tied to that control. If the cursor is in the Edit control box, the
ACVFILTVAL ID in the help file i s tied to that control.

Help Message Parts - in a help message file, each message consists of
the items described in the following descriptions. Refer to the following
illustration for assistance in understanding the message item relationships.

TekTMS Instrument Front Panel Developer User Manual 4-3

Help Editor

Message I D 123, Caption, and Text

I D
Ll23

Messages are composed of a captlon
(the flrst llne In the text box) and
text (remalmng llnes) The cap t~on
and text llnes xlll be centered In
a message box that 1s automatically
s ~ z e d to hold the tnformatlon

Labels and Dest inat~ons for Message I D 123 Message I D 123 displayed

Label Dest lnat~on

Message I D 136. Caption. a n d Text

ID
1 136

Limits
The caption is the first line of text.
The message text can be as long as
24 lines of text. 3

I I Messages I I
Messages are composed of a captlon
(the first line in the text box) and
text (remaining lines). The captlon
and text llnes wlll be centered in
a message box that 1s autornat~callv
sued to hold the tnformation ~
- -

Remove #
message Display

Message ID

I Llmlts I
The capt~on is the first line of text
The message text can be as long as
24 lines of text

HELP EDITOR DISPLAYED MESSAGES

Message ID - In the ID: box, a unique name or number is used to
identify a particular message in the message file. The ID is used by the
application to call a message and display it. The ID can be uppercase
alpha characters and/or positive numerals, and it is limited to eight
characters.

Caption - The name above the message text in the Text: box; in the
example, MESSAGES. The name is limited to one line in length; it is the
first line of text in the Message text box.

Text - The message text, in the Text: example, MESSAGES ARE COM-
POSED, . The message text is limited to 24 lines. When the message is
displayed, the Help Editor automatically sizes the message box to hold
the message text and caption, and justifies each text line.

Labels - The labels in the command buttons (i.e., OK). The command
button labels can be any text you choose. A message can have as many
as five buttons.

4-4 Help Editor

Help Editor

Destination -The action assigned to a command button. The destina-
tion determines what happens when you select the associated com-
mand button. The destination can be a negative number, which removes
the message from the screen. For example, -1 is usually used as a
destination for OK. Or, the destination can be the ID of another help
message; in this case, that message is displayed when the associated
command button is selected.

Editing Help Messages - The following text describes how to edit a
message in a help file.

Open the TDM512O.HLP File - In the Help Editor window, select Eile,
then Open. A File name: Listbox will appear. The files listed in the
Listbox are those in the indicated directory. Select the drive and directo-
ry that contains TDM5120.HLP. Then select the TDM5120.HLP file with a
double-click of your mouse; or with a single-click on the file name and a
single-click on the Open Pushbutton.

The Help Editor lists the messages in the file, in the Listbox, by ID, as
shown in the following illustration.

using the instrument to be set
ccordinsly.

Select and Edit a Message or Caption - Select a message in the
Listbox that you want to edit; for example, ACVRANGE. The message ID
is shown in the ID box, and the message caption and text are shown in
the Text box. To change the message, place the pointer on the text, click
the mouse, and make the desired changes. The first line of text in the
Text box is the Caption; this appears as the title of the message when
the message is displayed.

TekTMS Instrument Front Panel Developer User Manual 4-5

Help Editor

You can use the Cut, Copy, and Paste features of the Edit menu on
highlighted text in the Text box. Note that the text does not automatically
word-wrap; you must insert carriage returns where you want a line to
end. Also, keep in mind that each text line will automatically be left
justified in the message box, when the message is displayed. You might
want to add a space to the left at each message line for clarity.

Now to process an example, add the sentence List and Pushbutton are
both valid as syntax to the Text: after . . . PUSHBUTTON CONTROL. The
illustration shows the Help Editor window, with the suggested changes
made to the text of message ID ACVRANGE.

NOTE

You may want to make a copy or your TDM5120. HLP file, using
another name, for future reference. When you modify the file and
save it in HELPED, it will stay modified. You can also use your
original or backup software diskettes to restore TDM5120.HLP to
the way it originally was.

When you are done editing the message, select Change!; this updates
the TDM5120.HLP file with the changed message.

NOTE

If you do not select Change! while your edited message is dis-
played, your changes will be lost.

Now, select Show! to see how your edited message looks. The following
illustration shows the message modified in the Help Editor Text: window.

To remove the displayed message, select the OK Pushbutton in the
displayed message box. The OK Pushbutton in the message box is
called the Command Button Label.

4-6 Help Editor

Help Editor

This control i s a ListBox control. List
and ListBox are both valid a s syntax. The
user double-clicks t h e desired range
causing the instrument to be set
accordingly.

ntrol. List
Datatype: String s syntax. The
Input/Responses: "CIUTO" CAutoRange)

"1" C300mU range)
"2" (3U range)
"3" (30U range)
"4" 1300U range)

Command Button Labels - Labels are the names of the command
buttons that appear at the bottom of a message. Each label is linked to
a destination, either to another message in the same *.HLP file, or to a
negative number. These destinations determine what happens when a
particular command button is selected while the message is displayed.
For example, if the label for a command button is linked to the number
- 1, the message is removed from the window when OK is selected.
(Usually, the command button label OK is linked to -1 .)

NOTE

A link to - 1 is necessary to ensure that the help message can be
removed from the screen after it is called from IPG. If you do not
have a - 1 destination link with a command button (such as OK),
you will have to soft boot the controller to remove the help mes-
sage.

A command button label can also be linked to another message. When
that command button is selected while the original message is dis-
played, the linked message is then displayed. In such a case, the des-
tination of the label in the original message is the ID of the linked
message.

You can link a number of messages to one message, in a star fashion
using a label and destination for each linked message, or chain a series
of messages, or you can use a combination of these methods.

TekTMS Instrument Front Panel Developer User Manual 4-7

Help Editor

NOTE

The display panel is sized to include the button text; however, the
box around the text may be cut off. If this occurs, add blanks to the
end of one line of message text to expand the display panel.

Displaying Message Links -You can look at the labels and destinations
for a message. With the message ACVFIVE displayed (click on ID ACVFIVE
from the Listbox), select Links The Help Editor displays the Edit Links
box. Labels are the names of the command buttons; these are listed on the
left in the box. Destinations are listed on the right. The Label and Destination
at the top of the list are also shown in the Label and Destination boxes, as
shown in the following illustration.

Select the OK PushButton to Exit the Edit Links Window

Displaying Command Buttons - The command button labels will be
displayed when you select Show!. The help message ACVFIVE will have
four command buttons set up, as shown in the following illustration.

(When you are in IPG and select Help for instrument or Control, and you
then select OK, the message is removed from the display.)

Now, select OK to remove the box from the HELPED window.

4-8 Help Editor

Help Editor

This control is a RadioButton control. It
is actiuated by clicking either the circle
or the name. This control is part of a
one-of-sroup laccuracy). When a control
in this group Iacuthree, acufour, acufiue,
acusix) is clicked (turned on) the rest
will turn off. control. It

er the circl
part of a

Datatype: Integer n a control
Input/Res~onse: O (off) our, acufiue

1 (on)) the rest

Adding and Linking a Message

Adding -You can add a new message, and link that message to ensure
that it can be removed when it is used in IPG. You can also link it to an
original message in the TDM5120.HLP file; or to another new message.

For example, we will add the message ID addto and create a message that
reads: Views for DCY OHMS and all other DM5120 functions may be added
in the script. Then we will link that new message to an OK Pushbutton, and
to a message that exists in the file.

Call up ID ~M512 0. Change the DM512 0 ID: to addto. Change the Text:
Caption to Add Views. Change the text to read: Views for DCY OHMS and all
other DM5120 functions may be added to the script. Refer to the following
illustration for an example of making changes to an existing file to create a
new message.

You must select Add! to implement the new material, and you must select
Save from the File menu to save the TDM5120.HLP file for use. -

TekTMS Instrument Front Panel Developer User Manual 4-9

Help Editor

Uiews for DCU, OHMS and a l l other D M 5 1 2 0
f u n c t i o n s may b e added to t h e s c r i p t .

Linking

Linking the New Message - We will now link the new message by
selecting Links ... while the ID ADDTO is still on the screen. Type OK in the
Label box; and type - 1 in the Destination box, as shown in the following
illustration. As a reminder, the OK pushbutton will allow you to remove the
help message when it is called (without it you will not be able to get out of
that help message).

Select the Add pushbutton and then the OK pushbutton to get back into the
Help editor.

4-10 Help Editor

Help Editor

D e s t i n a t i o n
cv range

Linking To An Existing Message - We will now link the new message
to an existing message (DM512 0) with the command button VIEW.

Call ID ~ ~ 5 1 2 0 again. Select l inks ... from the Help Editor main menu. Type
VIEW in the Label box and addto in the Destination box, as shown in the
following illustration. Select the Add pushbutton and then the OK pushbut-
ton. Select Show! to view your new command buttons. Select the OK push-
button to exit.

TekTMS Instrument Front Panel Developer User Manual 4-1 1

Help Editor

Destination

Creating a New Message

To create a new message, select a message in the TDM5120.HLP list (possi-
bly one that is similar to the message you want to add). For this exercise,
select ID ~M5120, and display its ID: and Text:.

Change the ID to what you want to assign to the new message; then
change the message caption and text so that the Text: box contains the
information you want the new message to display. For this example, change
the ID to morefunc; change the caption (the first line of text in the Text: box)
to Add More Functions; and change the text " to read relative to adding
views in the script. In this case add: If you want to use more DM5120 func-
tions ..., as shown in the following illustration, then select Add! in the menu
bar. The name of the new message is added to the list of messages in the
Listbox. Use the scroll bar in the Listbox, if necessary, to check that the new
message ID is listed.

4-72 Help Editor

Help Editor

Now select Links ... to display the Edit Links box. Place the pointer in the
Label box and type OK; move the pointer to the Destination box and type
"- 1 "; then select the Add pushbutton. This will add the command button
OK, SO that you can remove the displayed message when you use it in IPG.
Finally, select the OK pushbutton.

Linking the New Message to Another - As with the previous linking
example, if you want to link the new message to another message in
TDM5120.HLR do the following: select the message you want to link your
new message to, like ACVACQ; then select Links Place the pointer in the
Label box and type in the name of the command button you want to add to
the message box that will call up your new message (i.e., VIEW2). Then,
move the pointer to the Destination box and type the ID you gave the new
message, morefunc. Then select the Add pushbutton and select the OK
pushbutton. You can display the message ACVACQ, to see that the new
control was added to it. To do this, select message ACVACQ, and then select
Show! in the menu bar. To remove the displayed message, select OK.

Testing the New Message - To try out the new message, save the
TDM5120.HLP file by selecting File in the Help Editor window, and then
selecting Save; reduce the Help Editor to an icon.

Start IPG, and display the TDM5120.ISD front panel. (Refer to Testing Scripts
in Section 3 for instructions with using TEKTMS.EXE, if necessary.)

Select the Acq pushbutton, then select Help. Select Control from the Help
menu. Notice that the message box has the VIEW2 command button that
you added to the ACVACQ message earlier.

TekTMS Instrument Front Panel Developer User Manual 4-73

Help Editor

Now click on the VIEW^ command button. The MOREFUNC message will be
displayed, as shown in the following illustration. Select OK to remove the
message.

To continue, exit IPG and maximize the Help Editor window.

procedures, add a view t o t h e s c r i p t f o r
each f u n c t i o n .

Copy one o f your e x i s t i n g views and make
a p p r o p r i a t e changes i n commands and
syntax. Use o t h e r s e c t i o n s o f t h i s manual
and t h e ins t rument manuals f o r r e f e r e n c e s .

Deleting a Message

To delete a message, you first need to determine several things:

w That the ID is not tied to the Script name or to a control variable name. If
it is, you may have to change the script along with the *.HLP file.

w The ID of the message you want to delete

w The ID of the message that has the link@) to the message you want to
delete

w Whether the message you want to delete has any links to other mes-
sages; if it has, these will also need to be deleted, so you will need to
know their IDS as well.

In this tutorial, we will delete the message MOREFUNC that you added in the
previous tutorial. We already know the following:

w That the message MOREFUNC is not an original message tied to a control
variable name, so no changes to the script are necessary

That the ID of the message is MOREFUNC

That the ID of the message having the link to the message that will be
deleted is ACVACQ

4-14 Help Editor

Help Editor

8 That the message to be deleted has no links to any other messages.

If we were deleting some other message, we could determine some of these
items by examining the links of the message to be deleted; however, it might
be difficult to determine all of the links, and to determine which message has
the link to the message we want to delete. In this event, you could print the
*.HLP file and then find the link to the file you want to delete in the printout.
The printout lists the ID, Caption, Text:, command button labels, and des-
tinations for all messages in the file. (To print a *.HLP file, select the file, and
then select print in the File menu.)

We will now actually delete the message MOREFUNC. Select the message
from the TDM5120.HLP ID list, so that the ID and Text: are displayed. Select
Delete, and the ID and Text: will disappear, and the ID will be removed from
the Listbox.

Next, we will delete the link to the message just deleted. Select the message
ACVACQ that has the link to message MOREFUNC that has been deleted.
Select Links Highlight the Label-Destination line VIEW^ 1 MOREFUNC,
then select Delete.

Both the message MOREFUNC and the link from message ACVACQ to mes-
sage MOREFUNC have now been deleted. Select OK to remove the Edit Links
box.

Ending an Edit Session

When you are finished editing, you need to save the changes to the *.HLP
file. To save the changes, select Eile; then select Save.

At this point, you can open another file for edit, if you wish, or you can exit
the Help Editor.

Making a New ISD Help Message File

This information describes how to create a new help message file for an
instrument soft front panel in IPG, add messages to it, and link the mes-
sages. For information on how to call these messages from the script, refer
to the Interactive Procedure Generator (IPG) Users Manual.

Before creating a new message file, decide what messages you want in the
file and the relationship between messages where you will have linked
messages. Two forms are shown at the end of this section; one form pro-
vides a way to record the relationship between messages, and information
about a message can be recorded on the other form. Copy these forms and
use the copies to plan and then create the new message file.

Modify an Existing Help File -There are two ways to create a new help
message file. One way is to open an existing *.HLP file, save it to another file
name, and then modify the file that has the new name. This method works
well when an existing help file is similar to the help file you want to create.

TekTMS Instrument Front Panel Developer User Manual 4-15

Help Editor

Start A New Help File -The other way to create a new help message
file is to select New in the File menu. Fill in the ID and Text: box with in-
formation for the first message, and select Add to place the message ID in
the Listbox. You can add more messages and add links between messages
as previously described; however, at some point you need to select Save to
save the file to a new file name. The new file name must be the same as the
script (i.e., if the script is TFG5010.ISD, the file from the Help Editor must be
TFG5010.HLP).

NOTE

As a reminder, you cannot give an *.ISD file and *. HLP file the same
names as a name in your GPIB.COM IBCONF file.

4-16 Help Editor

Help Editor

Message Link Map

TekTMS Instrument Front Panel Developer User Manual

Help Editor

The following illustration shows part of the preceding message link map
filled in. The first ID on the left (column 1A) is the ID of a message that is
linked to the new message (in column 46).

Help Editor

1

ID

A I 301

8 I
C I
D I

W' ''

E I 302

F I
0 1

w: .
H I

9 1 @ $1

Label Dst

- 1

- 1

Label

OK

Help

OK

Help

I $3
Dst ID Dst

-1

401

-1

402

Label

OK

-1

2 / 3 [4 [S f 6 1 7 1 8
Dst

501

502

ID

401

ID

501

502

Label

Label

Text

Help Editor

Message Form

Link from Message ID - to this message.

Links from this message to other messages.

Label: Linked to:

Label: Linked to:

Label: Linked to:

Label: Linked to:

Caption:

Text:

-

TekTMS Instrument Front Panel Developer User Manual

Help Editor

Printing a *.HLP File The Help Editor can be used to print all message information contained in a
.HLP file. The printout lists the ID, Caption, Text:, command button labels,
links, and destinations for each message in the file. To print a *.HLP file, run
the Help Editor, select the *.HLP file that you want to print, and then select
Print in the File menu.

A printout will look similar to the sample portion illustrated below.

It might be helpful;, before you begin using the Help Editor to modify a
*.HLP file, to print the file you are going to change. Changes can be marked
on the printout as you plan what changes to make, then the printout can be
used for reference during the edit session.

ID: ACQUIRE

ACQ

THIS IS A PUSHBUTTON CONTROL, AN INPUT ONLY DEVICE. THE
USER CLICKS THE BUTTON CAUSING AN ACTION TO OCCUR. THE
CONTROL WILL MOMENTARILY DARKEN AND THEN REVERT TO ITS
NORMAL STATE.
THIS PARTICULAR CONTROL WILL CAUSE THE INSTRUMENT TO GO
TO ACV MODE AND THEN UPDATE MEASUREMENT DISPLAY.
DATATYPE: STRING
INPUT: 1 - PUSH

BUTTONS :
OK - 1

ID: ACVRANGE
RANGE

THIS CONTROL IS A PUSHBUTTON CONTROL. THE USER DOUBLE-
CLICKS
THE SELECTION THAT IS DESIRED.

DATATYPE: STRING
INPUT/RESPONSES: "AUTO" (AUTORANGE)

"1" (300MV RANGE)
"2" (3V RANGE)
" 3 f f (30V RANGE)
" 4 " (300V RANGE)

BUTTONS :
OK

4-20 Help Editor

Appendices

Appendix A
TDM5120.ISD Script Listing

A listing of TDM5120.ISD is provided here so you can examine the entire
script while developing new scripts or modifying scripts.

REM TEKTRONIX DM5120 DIGITAL MULTIMETER SCRIPT "DM5120"

GPIB
END

LEARN VAR:STR
SETTING
CONT -> VAR;

END
MEASUREMENT
CONT -> "SET?";
INST -> VAR;

END
END

VIEW "ACV"

TEXT "DM5120 AC VOLTMETER" @ 5,l.O;
TEXT"ACCURACYU @ 3.75,6.5;

CONNECT(12.5,7), (14,7), (14,14), (2,141, (2,7), (3,7);

CONTROLGROUP
CONTROL ACVACQ:INT PUSHBUTTON @ 18.75,15

REMARK .ACQ FORACQUIRE

STRING "ACQ";
UPDATELIST ACVREADING;

END
SETTING
CONT -> "ACV";

END
END

CONTROLGROUP
CONTROL ACVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5
NUMROWS 1; NUMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END

TekTMS Instrument Front Panel Developer User Manual A- 1

Appendix A: TDM5120.ISD Script Printout

MEASUREMENT
CONT -> "SEND";
INST-> ACVREADING,";";

END
END

CONTROLGROUP
CONTR0LACVTHREE:INT RADIOBUTTON @ 2.5,7.5

STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SET
IF (ACVTHREE==l) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY
TEMPVAR TMP:STR;
ACVTHREE =O;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, ";";

IF (TMP=="3") THEN
ACVTHREE = 1;

END IF
END

END

CONTROLGROUP
CONTROL ACVF0UR:INT RADIOBUTTON @ 2.5,9
STRING "4 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELISTACVREADING;

END
SETTING
IF (ACVFOUR== 1) THEN
CONT -> "DIGIT 4";

ENDIF
END
MEASUREMENT
TEMPVAR TMP:STR;
ACVFOUR = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, " ;" ;

IF (TMP=="4") THEN
ACVFOUR =1;

ENDIF
END

END

A-2 Appendices

Appendix A: TDM5120.ISD Script Printout

CONTROLGROUP
CONTROLACVF1VE:INT RADIOBUTTON @ 2.5,10.5
STRING "5 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SETTING
IF (ACVFIVE==l) THEN
CONT -> "DIGIT 5";

ENDIF
END
MEASUREMENT
TEMPVAR TMP:STR;
ACVFIVE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP,";";
IF (TMP=="5") THEN
ACVFIVE = 1;

ENDIF
END

END

CONTROLGROUP
CONTROL ACVS1X:INT RADIOBUTTON @2.5,12.
STRING "6 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST ACVREADING;

END
SETTING
IF (ACVSIX==l)THEN
CONT -> "DIGIT 6";

ENDIF
END
MEASUREMENT
TEMPVAR TMP:STR;
ACVSIX = 0;
CONT ->"DIGIT?";
INST -> "DIGIT " , TMP, " ; " ;

IF (TMP=="6")THEN
ACVSIX = 1;

ENDIF
END

END

TekTMS Instrument Front Panel Developer User Manual A-3

Appendix A: TDM5120.ISD Script Printout

CONTROLGROUP
CONTROL ACVF1LT:INT CHECKBOX @ 2.5,15.0

STRING"AVEn;
UPDATELIST ACVREADING;

END
CONTROLACVF1LTVAL:INT EDIT @ 8.75,15.0
NUMROWS 1;NUMCOLS 5;

END

SETTING
IF (ACVFILT==l) THEN
CONT -> "FILTERVAL ",ACVFILTVAL,";FILTER ON";

ELSE
CONT -> "FILTER OFF";

ENDIF
END
MEASUREMENT
TEMPVAR FILT0N:STR;
CONT ->"FILTER?;FILTERVAL?";
INST -> " ",FILTON,";"," ",ACVFILTVAL,";";
IF (FILTON=="ONn) THEN
ACVFILT=l;

ELSE
ACVFILT=O;

ENDIF
END

END

CONTROLGROUP
CONTROL ACVRANGE:STR LISTBOX @ 18.75,8.0
NUMROWS 5;NUMCOLS 5;
CONTROLTITLE "RANGE";
STRING " AUT0","300 MV", " 3 V"," 30 V0,"300 V";
TOSCRIPT "AUTO","l", "2","3" , " 4 " ;

UPDATELIST ACVREADING;
END
SETTING
CONT -> "RANGE ",ACVRANGE;

END
MEASUREMENT
CONT -> "RANGE?";
INST -> "",ACVRANGE,".". t I

END
END
END

A-4 Appendices

Appendix A: TDM5120.ISD Script Printout

VIEW "DCV"

TEXT "DM5120 DC VOLTMETER" @ 5,l.O;
TEXT "ACCURACY" @ 3.75,6.5;
CONNECT (12.5,7), (14,7), (14,14), (2,14), (2,7), (3,7);

CONTROLGROUP
CONTROL DCVACQU1RE:FLOAT PUSHBUTTON @ 18.75,15
STRING "ACQ" ;
UPDATELIST DCVREADING;

END

SETTING
CONT -> "DCV";

END
END

CONTROLGROUP
CONTROL DCVREAD1NG:FLOAT TEXTBOX @ 2.5,4.5
NUMROWS 1; NUMCOLS 20;
CONTROLTITLE "MEASUREMENT";

END
MEASUREMENT
CONT ->"SENDu;
INST -> DCVREADING,";";

END
END

CONTROLGROUP
CONTROL DCVTHREE:INT RADIOBUTTON @ 2.5,7.5
STRING "3 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST DCVREADING;

END
SET
IF (DCVTHREE) THEN
CONT -> "DIGIT 3";

ENDIF
END
QUERY

TEMPVARTMP:STR;
DCVTHREE = 0;
CONT -> "DIGIT?";
INST-> "DIGIT " , TMP, " ;" ;

IF (TMP=="3") THEN
DCVTHREE =l;

ENDIF
END

END

TekTMS Instrument Front Panel Developer User Manual A-5

Appendix A: TDM5120.ISD Script Printout

CONTROLGROUP
CONTR0LDCVFOUR:INT RADIOBUTTON @ 2.5,9
STRING "4 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST DCVREADING;

END
SETTING
IF (DCVFOUR) THEN
CONT -> "DIGIT 4";

ENDIF
END

MEASUREMENT
TEMPVAR TMP:STR;
DCVFOUR = 0;
CONT -> "DI .GIT?";
INST -> "DIGIT " , TMP,".". I (

IF (TMP=="4") THEN
DCVFOUR = 1;

ENDIF
END

END

CONTROLGROUP
CONTROL DCVF1VE:INTRADIOBUTTON @ 2.5,10.5
STRING "5 DIGITS" ;
ONEOFGROUP"ACCURACYU;
UPDATELIST DCVREADING;

END
SETTING
IF (DCVFIVE) THEN
CONT -> "DIGIT 5";

ENDIF
END
MEASUREMENT
TEMPVAR TMP:STR;
DCVFIVE = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, " ; " ;
IF (TMP=="5") THEN
DCVFIVE = 1;

ENDIF
END

END

A-6 Appendices

Appendix A: TDM5120.ISD Script Printout

CONTROLGROUP
CONTROL DCVS1X:INT RADIOBUTTON @ 2.5,12.
STRING "6 DIGITS";
ONEOFGROUP "ACCURACY";
UPDATELIST DCVREADING;

END
SETTING
IF (DCVSIX) THEN
CONT -> "DIGIT 6";

ENDIF
END
MEASUREMENT
TEMPVAR TMP:STR;
DCVSIX = 0;
CONT -> "DIGIT?";
INST -> "DIGIT " , TMP, ";";

IF (TMP=="6") THEN
DCVSIX =l;

ENDIF
END

END

CONTROLGROUP
CONTROL DCVF1LT:INT CHECKBOX @ 2.5,15.0
STRING "AVE" ;
UPDATELIST DCVREADING;

END
CONTROL DCVF1LTVAL:INT EDIT @ 8.75,15.0
NUMROWS 1;NUMCOLS 5;

END
SETTING
IF (DCVFILT==l) THEN
CONT -> "FILTERVAL ",DCVFILTVAL,";FILTERON";

ELSE
CONT -> "FILTER OFF";

ENDIF
END
MEASUREMENT
TEMPVAR FILT0N:STR;
CONT ->"FILTER?;FILTERVAL?";
INST -> " ",FILTON,";"," ",DCVFILTVAL,";";
IF (FILTON=="ON") THEN

DCVFILT=l;
ELSE
DCVFILT=O;

ENDIF
END

END

TekTMS Instrument Front Panel Developer User Manual A-7

Appendix A: TDMS120.ISD Script Printout

CONTROLGROUP
CONTROL DCVRANGE:STR LISTBOX @ 18.75,8.0
NUMROWS 5;NUMCOLS 5;
CONTROLTITLE "RANGE";
STRING " AUTOn,"300 MV", "3 V"," 30 V","300 V";
TOSCRIPT "AUTO","l", "2","3","4";
UPDATELIST DCVREADING;

END
SETTING
CONT -> "RANGE " , DCVRANGE ;

END
MEASUREMENT
CONT -> "RANGE?";
INST -> " ",DCVRANGE,";";

END
END
END
END

A-8 Appendices

Softw
Appendix B:

lare Performance Report

This Software Performance Report is for your use in reporting any problems
you experience when using TekTMSIFPE. It provides us with a way to track
problems with a particular system and it ensures that we provide you and
other customers with a prompt solution to the problem. Please supply the
following information:

Customer (Company Name):

User (Person making report):

Address:

City: State: Zip:

Country: Telephone:

System Description (Product Name, SIW Version, Serial Number):

Product Name: PC ModelIMake:

Version: DOS Version:

Serial No: Windows Version:

Other Software (TSR's, ...)

Problem Description:

(If possible, include exact steps to recreate the problem.)

Itemize attached documentation (i.e., listings, diskettes, ...)

Mail the report to:

Tektronix, Inc.
lnstrument Controllers and Software Marketing Dept.
MS 47-665
PO. Box 500
Beaverton, OR 97075-9965

Or FAX to:

Marked for ICS Marketing, 47-665

TekTMS Instrument Front Panel Developer User Manual A-9

Appendix B: Software Performance Report

A-10 Appendices

Index

Index

Symbols
&, 2-43

Precedence, 2-44

%, 2-51

%F Format, Definition, 2-51, 2-54

%n.mE Format, Definition, 2-51, 2-54

%n.mG Format, Definition, 2-51, 2-54

%nB Format, Definition, 2-51, 2-54

%nD Format, Definition, 2-51, 2-54

%nH Format, Definition, 2-51, 2-54

%nO Format, Definition, 2-51, 2-54

%nS Format, Definition, 2-51, 2-54

+, 2-43
Precedence, 2-44

+ Formatting Modifier, Definition, 2-52

-, 2-43
Precedence, 2-44

*, 2-43
As a string entry, 2-50
Precedence, 2-44

1, 2-43
Precedence, 2-44

=, 2-43
Precedence, 2-44

= = , 2-43
Precedence, 2-44

<, 2-43
Precedence, 2-44

< Formatting Modifier, Definition, 2-52

< =, 2-43
Precedence, 2-44

< > , 2-43
Precedence, 2-44

>, 2-43
Precedence, 2-44

> = , 2-43
Precedence, 2-44

\, As a string entry, 2-50

Activating Controls, 3-28

Actual Versus Composite Controls, 1-4

addition, Precedence, 2-44

and Operator, 2-43
Precedence, 2-44

Application Oriented Front Panel
Views, 1-1

ASCII, Using, 2-8

ASCll Character Conversion Function,
Definition, 2-45

ASCll Learn Block, 2-9

assignment Operator, 2-43
Precedence, 2-44

Assignment Statement
Definition, 2-35, 2-42
Examples, 2-43

Assignment Statements, 2-40

ATN Command, Definition, 2-41

band Operator, 2-43
Precedence, 2-44

BINARY, Using, 2-8

Binary, Definition, 2-51,2-54

Binary Format, Using, 2-52, 2-54

Binary Icon, for translation, 3-31

Binary ISD Files, 3-31-3-34
Using binary, 3-31
Using Binary ISD Files, 3-33

BINARY Learn Block, 2-9

bitwise AND Operator, 2-43
Precedence, 2-44

bitwise EXCLUSIVE OR Operator, 2-43
Precedence, 2-44

bitwise negation, Precedence, 2-44

bitwise NOT Operator, 2-43

bitwise OR Operator, 2-43
Precedence, 2-44

bnot Operator, 2-43
Precedence, 2-44

bor Operator, 2-43
Precedence, 2-44

BusNote, Keyword listing, 2-58

BusNote Block
CDS 53 Series Parameters, 2-7
Definition, 2-4
GPlB Parameters, 2-5
MXI Parameters, 2-7
RS232 Parameters, 2-6
VX5520 Parameters, 2-6
VXI Parameters, 2-7

bxor Operator, 2-43
Precedence, 2-44

CDS 53 Series Parameters
Default settings, 2-8
Description, 2-7-2-10

CDSBUS, Definition, 2-4

Charting a Front Panel, 3-3

CheckBox, 3-19
Activating, 3-28
Data Types, 2-15
Definition, 2-21-2-23
Using, 3-5, 3-19

CheckBox with EditBox, Activating,
3-28

chr(n) Function
Definition, 2-45
Using, 2-37

Common Problems when Formatting,
2-55

TekTMS Instrument Front Panel Developer User Manual I- 1

Condition, Definition, 2-36

CongrolGroup Block, Using, 3-8

Connect Statement
Definition, 2-1 1-2-13
Example, 2-12

Connect Statements, Using. 3-8

Construct Definitions, Listing, 2-15

cont - >, 2-37

Control Block
Definition, 2-13
Description, 2-15
Keyword listing, 2-58
Using, 3-9

Control ID, Using, 2-13, 2-14

Control Sizes (in character spaces),
Listing, 3-3

Control Title, Using, 3 .4

Control Type Sun:rnary Chart, 2-33

ControlGroup Block
Defin~iion, 2-12-2-34
Description, 2-15
Keyword listing, 2-58
Using, 3-24

Controller Dialog
Description, 2-37
Using, 3-11, 3-17

Controller Dialog Format, 2-53

Controller Dialog Formats, Description,
2-51

ControlTitle. Definition, 2-15

Converting ASCII tc Binary, 3-31

Converting waveforms to variables,
2-26-2-30

Coordinate System, 2-1 1

Dialogs
Listing, 2-35
Using, 2-37-2-40

Display Coordinates, Expiained, 3-3

Display String Funct~on
Definition, 2-46
Example, 2-46

Display Types, 2-10

divide Operator, 2-43

division, Precedence, 2-44

EditBox
Data Types, 2-1 5
Definition, 2-18-2-19
Using, 3-19, 3-20

EOI (End Of Input) Parameter, GPiB
definition, 2-5

EOM (End Of Message) Paramster,
GPlB definition, 2-5

equal Operator, 2-43
Precedence, 2-44

Error Messages, 3-28

Errors
NonNumeric character, 2-56
Not Enough Data Received, 2-55
Too Much Data Received, 2-56

Exponential Numbers, Definition, 2-51,
2-54

Expressions
Using in a Controller Dialog, 2-37
Using in an lnstrument Dialog, 2-38

CRLF (ReturnLine Feed), As a string
entry, 2-50

Data Values, For Controls, 2-15

DCL Command, Definition, 2-41

DefaultPos, Definition, 2-15

Determining Control Types, 3-3

Device Name, 3-26

FastDCRead Function
Definition, 2-48-2-49
Example, 2-48
Using, 2-47

FastDCWrite Function
Definition, 2-46
Example, 2-46
Using, 2-47

file name, Using in %F format, 2-51,
2-54

floating point, Definition, 2-51, 2-54

Floats, Definition, 2-50

Format Character, 2-51, 2-58

Format Types
Free Format, 2-52
Leading zero fill, 2-52
Left justify, 2-52
Listing, 2-51
Output sign, 2-52

Formats, Common Problems, 2-55

Free Format, 2-2, 2-52

Front Panel Appearance, 1-5

Front Panel Helps, 1-5

Front Panel View Optimization, 1-3

Front Panel Views, 1-1

Full Interaction Mode, Example, 2-13

Fully Functional lnstrument Front
Panel Views, 1-1

Function Call, Definition, 2-35

Functions
CHR, 2-45
Descriptions, 2-45-2-49
Display, 2-46
FastDCRead, 2-48-2-49
FastDCWrite, 2-46-2-47
Keyword listing, 2-58
Readlength, 2-49-2-50
TimeDelay, 2-45

Generating Test Procedures, 3-29

GET Command, Definition, 2-41

Global Variable, 2-13

GPIB, Definition, 2-4

GPlB Bus, Using, 3-7

GPlB Command, Keyword listing, 2-58

GPlB Commands, 2-40
Definition, 2-35
Where Used, 2-40

P2 ,.?: I : ' z * ? ' Index

GPlB Parameters
Default settings, 2-6
Description, 2-5-2-6
End of Input (EOI), 2-5-2-6
End of Message (EOM), 2-5-2-6
Timeout, 2-5-2-6

greater than Operator, 2-43
Precedence, 2-44

greater than or equal Operator, 2-43
Precedence, 2-44

Grouping RadioButtons, 3-15

GTL Command, Definition, 2-41

Help Editor
Add~ng a Message, 4-9
Captions, 4-4
Command Button Labels, 4-7
Creating a New Message, 4-12
Deleting Messages, 4-14
Description, 4-1
Destinat~on, 4-5
Displaying Command Buttons, 4-8
Displaying Message Links, 4-8
Edit Links Box, 4-8
Editing Help Messages, 4-5
Ending, 4-15
Help Editor & Script Internal Rela-

tionships, 4-2
Help Message Files, 4-2
Help Message Parts, 4-3
Labels, 4-4
Learning to Use, 4-1
Linking Messages, 4-10, 4-13
Message Form, 4-19
Message ID, 4-4
Message Link Map Form, 4-1 7
Message Text, 4-4
Printing a .HLP File, 4-20
Starting, 4-2
Testing Messages, 4-13

Hexadecimal, Definition, 2-51, 2-54

Hexadecimal Format, Using, 2-52,
2-54

HT (Horizontal Tab), As a string entry,
2-50

IF Conditional Structure, Definition,
2-36

IF Statement, 2-44
Definition, 2-36
Using, 3-16, 3-18, 3-23

IF Statements, 2-40

If the endif Statement, Definition, 2-35

If then else endif Statement, Definition,
2-35

IFC Command, Definition, 2-41

input-expression, Definition, 2-38

INST Dialog, Readlength function,
2-49-2-50

lnstrument Dialog
Description, 2-38
Using, 3-1 7

lnstrument Dialog Format, 2-55

lnstrument Dialog Formats, Descrip-
tion, 2-54

lnstrument Front Panel, 1-1

lnstrument Measurement Update Path,
3-13

lnstrument Script Language (ISL), i ,
3- 1

lnstrument Select Menu Item, 2-36

Instruments Menu Item, 3-27

Integer, Definition, 2-54

integer, Definition, 2-51

Integer Values, For Controls, 2-15

Integers, Definition, 2-50

Interactive Front Panel Views, 1-1

Interactive Views, 1-2

ISD Files
ASCII, 3-31
binary, 3-31
Using binary, 3-31
Using binary ISD files, 3-33

ISL Keywords, Listing, 2-57-2-60

Keywords, Listing, 2-57-2-60

Learn Block
Definition, 2-8-2-9
Keyword listing, 2-58
with Measurement block, 2-8
with Setting block, 2-8

Learn Setting ... Menu Item, 2-9 ,,

LEARNED SETTING Step, 2-8

less than Operator, 2-43
Precedence, 2-44

less than or equal Operator, 2-43,2-43
Precedence, 2-44

LF (Line Feed),,As a string entry, 2-50

ListBox
Activating, 3-28 - '
Data Types, 2-15
Definition, 2-19-230, , .
Using, 3-3, 3-24 .(

Literal Strings, 2-50

LLO Command, ~efinit ioni 247,

logical AND Operator, 2-45 -!I- ' '

Precedence, 2-44

Logical lnstrument window,-1-1 .

logical negation, ~rece66rrce,'~-il4 ^

logical NOT Operator, 2-43

logical OR Operator, 2-43
Precedence, 2-44

Many-To-One Control Groups, 3-19 '

Measurement Block
Defin~tion, 2-35
In a Learn Block, 2-8

,' - 8 j L

TekTMS Instrument Front Panel Developer User Manual fig

Keyword listing, 2-59
Using, 3-12

output-expression, Definition, 2-37 ' S
Overview, 1-1

Measurement Block Variables, Using,
3-17 Save As ... Menu Item, 3-26

Script and Description Presentation,
3-6

Measurement Block with two Vari-
ables, 3-22

Script Basics, 2-1-2-4 minus Operator, 2-43
Script Block, Definition, 2-4-2-5 Miscellaneous Functions, Keyword

listing. 2-58
Parentheses. Using, 2-34

Script Block Keywords, Listing, 2-59 plus Operatcr. 2-43
Modifiers, 2-51 Script Development Procedures, 3-6 Precedence for Evalilation, Paren-

theses, 2-44 Modifying Scripts, 3-29 Script Identifier, 2-4

Multiple Views, 2-10 Precision, 2-51 Script Interchangeability, 3-5

multiplication, Precedence, 2-44 Precision Modifiers, Using, 2-55 Script Keyword, Using, 3-7

multiply Operator, 2-43 Primary Address. Using, 3-27 Script Model, 3-2

MXI, Definition, 2-4 Program Generation Front Panel
Views, 1-1

Script Planning, 3-3

MXI Bus Parameters
Default settings, 2-7
Description, 2-7

Scripts, i
Program Generation Views, 1-2

ScrollHorz, Definition, 2-16
PushButton

Activating, 3-28
Data Types. 2-15 . -
Definition, 2-20-2-21 c

Using, 3-5, 3-8

ScrollVert, Definition, 2-16

SDC Command, Definition, 2-41

Select ... Menu Item, 3-27

Setting Block
Definition, 2-35
in a Learn Block, 2-8
Keyword listing, 2-59
Using, 3-10

NonNurneric ~haractkr:'ks the cause
of an error, 2-56

NOOP (no operation), 2-40

Setting Block with Two Variables, 3-21 Not Enough Data Received Error, 2-55
RadioButton

Activating, 3-28
Data Types, 2- 15
Definition, 2-23-2-25
Using, 3-5, 3-14

not equal Operator,2-43
Precedence, 2-44

not Operator, 2-43
precedence, 2-44

Setting, Learn, & Measurement Ctrl
Functions, 1-3

Skip Characters Function, Description,
2-39

skip(n) Function
Definition, 2-39
Example, 2-38
Using in An Instrument Dialog, 2-39

Numcols, Definition, 2-15 Readlength Function, Definition,
2-49-2-50

Reloading Process, 3-28

Remark Keyword, Using, 3-6

REN Command, Definition, 2-47

Reserved Words, Listing, 2-57-2-60

RS232, 2-40
Definition, 2-4

RS232 Bus, Using, 3-7 -

RS232 Parameters
Default Settings, 2-6
Description, 2-6

Numeric Format Handling, Possible
problem conditions, 2-56

NumRows, Definition, 2-16 State Construct, Definition, 2-16

Statements
Description, 2-462-45
Listing, 2-35-2-36 0 ---

+,

Octal, Definition, 2-51, 2-54

Octal Format, Us~ng, 2-52, 2-54

OneOfGroup, Deflnlt~on, 2-16

OneOfGroup Statement, Using, 3-15

Operators, Llstlng, 2-42, 2-59

or Operator, 2-43
Precedence, 2-44

Step Menu Item, 2-9

string, Using, 2-51, 2-54

String concatenation, Precedence,
2-44

- :;c l jv30 igr d q 3 , r Index

. - " ..- ..-
string concatenation Operator, 2-43"' ToSdriptOn, Definition, 2-16 - VX5520, 2-40 C,-, ; :.?I-', ;'cw\j&,*

. . ,.
Definition, 2-4 , , # ,:>::: :;

String Constants Translate Button, ASCII to Binary, 3-31
Using in a Controller Dialog, 2-37 ,
Using in an lnstrument Dialog, 2-38

VXBtQO W s Paranletefs c 5 ,. 5 . "'

Default Settings, 2-6-2-7
Dewription, 2;6-2-7 a ,-,- ,

VXI Bus, Using, 3-7
String Construct, Definition, 2-16

String Statement, Using, 3-24 u
VXI Fast Data Channel protocol,3.46,

2-*,+VQ . ' , - J

VXI Internal Bus Parameters
Default settings, 2-7
Description, 2-7 -

VXIINTERNAL, 2-40 , ,
Definition, 2-4

c :. ; '1.- I

Strings
Definition, 2-50 UNL Commahd,'Definition, 2-41

Literal, 2-50 UNT Command, Definition, 2-41

subtraction, Precedence, 2-44 Updale Menu Item, 1-5

Update!, 1-5

UpDateList
< I T ~efinjtion, 2-77

I
T ,, t ,$, Using, 2:74, 3-10 ,

Tab, As a string entry, 2-50 " ' ' '

TALWLISTEN Function, 2-4

Talking to an Instrument, 3-73'' "

UpDateList Statement, Using, 3-15

Updating Features, 1-5

User Requirements, 1-1
-

1 . <:- ' t ~

Waveform Display -
Data Types, 2-15
Definition, 2-25-2-33
WayeformTg!DIF,Z'-25
WaveformToVar, 2-25

.. - , ' -
TDM5120.ISD Printout, A-1

"- -,i :;(-:-
Temporary Variables

Declaration, 2-40 ,;'.f
d -

Definition, 2-40 ; I , ' &,- WaveformDisplay, Example, 2-31
Tempvar Statement, Definition, 2-4D Variable Declarations, Definition, 2-35 WaveforrnTpADF, waveff~q 4iSPlah' ,

variable, 2-25, . . , - Testing Scripts, 3-27 +? - wf+&&n&g -- - . - - -
* *

Controller Dialog variables, j * .

2-5 1-2-60
Description, 2-51-2-56
lnstrument Dialog variables,

2-54-2-60
.7 \

Variable Types
Description, 2-50
Float, 2-50
Integer, 2-50
String, 2-50
Waveform, 2-50,, _ .
WaveformToVar definition,

+
2-26-2-30

Text Statement
Definition, 2-1 1-2-13

' I C T ; + ~
Example, 2-1 1

WaveformToAdif, Defmitiqn, 4-3ct; , ;

WaveformToVar . -I
2 . 1 kLL? 2 ' l . ,

Def~nitron, 2-26-2-30
variable use, 3;50 ' ' ' - '
waveform displiii variabtey2-23 '

..- --
Text Statements, Using, 3-8 _ .. -
TextBox ,.

- c _
Data Types, 2-15 C

Definition, 2-17-2-18 -
Using, 3-12

TIM Command, Definition, 2-41

While do end Statement, Definithn, "'
2-35 - 5.3' 2: ' 3 ' 3

WHILE statedent, 2-45 a ,

WHILE Statemknts, 2-40 - ,- -
Width, 2-51

Width Modifiers. Using, i~55 '

TimeDelay Function, Definition, 2-45

Timedelay Function, Example, 2-45 ,

~ariable:%forrnat
Using in a Controller Dialog, 2-37
Using in a lnstrument Dialog, 2-38

Timeout Parameter, GPlB definition,
2-5

Windows Notepad, 3-1

Title Construct, Definition, 2-16
V~ew Block ,,

Definition, 2-9-2-12
Keyword listing, 2-59

TMS Name, Using, 3-27

Too Much Data Received Error, 2-56

ToScript, Definition, 2-16 View Identifier, 2-9 7 ,

Z Formatting Modifier, Definition 2-52
I b - i l ~ , ToScript Statement, Using in a ListBox,

3-24,3-25
View Keyword, Using, 3-7

View Layout, 2-1G2-11
ToScriptOff, Definition, 2-16

TekTMS lnstrument Front Panel Developer User Manual

1-6 Index

